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Abstract 
In order to predict and forecast with greater accuracy, handling “missing values” in “time series” information is crucial. Complete and accurate 
historical data are essential. There are many research studies on multivariate time series imputation, however due to the lack of associated 
factors, imputation in univariate time series data is rarely taken into consideration. It is natural that “missing values” could arise because almost
all scientific disciplines that collect, store, and monitor data use "time series" observations. Therefore, time series characteristics must be 
considered in order to develop an effective and acceptable method for dealing with missing data. This work uses the statistical package R to 
assess and measure the effectiveness of imputation methods in the context of "univariate time series" data. The “imputation algorithms”
explored are evaluated using “root mean square error”, “mean absolute error” and “mean absolute percent error”. Four types of “time series”
are taken into consideration. According to experimental findings, “seasonal decomposition” performs better on the time series having 
seasonality characteristic, followed by “linear interpolation”, and “kalman smoothing” provides values that are more similar to the original time 
series data set and have lower error rates than other imputation techniques. 

Keywords: Univariate, time series, kalman, interpolation, missing values. 

 
I. Introduction 

Numerous disciplines, including economics (Yang, 2012), 
energy research (Mohamad et al., 2021), environmental 
studies (Hadeed et al., 2020), signal processing (Stankovic et 
al., 2014), traffic engineering (Ran et al., 2015) and ecology 
(Hossie et al., 2021), among others, can benefit from “time 
series” data analysis. In order to facilitate the implementation 
of policies or the deployment of control mechanisms, time 
series data can be analysed using a number of methodologies 
that explain emergent data patterns and forecast future 
behaviour. The accuracy of the data and the 
comprehensiveness of the supplemental information are 
requirements for information extraction from time series data. 

Missing observations can frequently happen while 
measuring, collecting, or creating data as a consequence of 
various factors, such as communication failures, data-
generating device failures and power failures. In analytical 
research, “missing data” may result in flawed and unwanted 
results, such as incorrect projections or poor policy 
judgements (Phan, 2020). Therefore, techniques to substitute 
“missing data” are required. 

In "time series", "missing data" can be replaced by either 
"imputation-based" or "model-based" techniques. The 
“model-based” techniques are different from “direct 
imputation” in that they solve likelihood equations applied to 
“missing data”. The “imputation-based” techniques on the 
other hand, estimate missing values by either completely 
removing them or replacing with appropriate values via 

general approach. In contrast to “model-based methods” for 
“multivariate time series”, most of techniques replacing the 
“missing observations” in “univariate time series” are 
“imputation-based”. The “univariate time series” imputation 
methods are classified as: “univariate algorithms”, 
“univariate time series algorithms” and “multivariate 
algorithms” for “lagged data” (Moritz et al., 2017). 

Other research, that does not explicitly take into account 
the statistical features of “time series”, highlighted many 
drawbacks of "univariate time series" imputation approaches, 
which were also noted by Moritz et al. (2015). One of the 
most popular approaches for univariate time series is "last 
observation carried forward", which combines 
"interpolation" and "arithmetic mean". In general, more 
reliable imputation techniques are needed for univariate time 
series, especially ones that can make better use of the 
statistical properties of the observations. In terms of 
imputation and prediction accuracy, we compared “mean”, 
“last observation carried forward”, “kalman smoothing”, 
“seasonal decomposition using interpolation”, “seasonal 
imputation using mean”, “moving average” and “moving 
average with exponential weighting”, “linear interpolation”, 
“spline interpolation”, and “stine interpolation” for single 
variate data, namely tsAirgap, tsNH4, and tsHeating, are all 
available in the R-package imputeTS. The same techniques 
was used on real-time consumer price index data downloaded 
from the M/o Statistics website. The precision is expressed as 
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“root mean square error”, “mean absolute error and “mean 
absolute percentage error”. 
 

II. Related work 
Fewer studies have been conducted on the imputation of 
“missing data” for “univariate time series”.  

In their article "A Method for Improving Imputation and 
Prediction Accuracy of Highly Seasonal Univariate Data with 
Large Periods of Missingness," Chaudhry et al. (2019) used 
LTE spectrum data, which is highly seasonal and univariate. 
They used Kalman filtering, which is defined as Kalman 
smoothing on an ARIMA model's state space representation, 
and MICE. They converted the univariate data to multivariate 
for MICE imputation. They evaluated their proposed method 
using mean absolute percentage error (MAPE) metrics. 

In his article titled "Imputation Methods in Time Series 
with a Trend and a Consecutive Missing Value Pattern", 
Wongoutong et al. (2021), compared ten real datasets to 
assess how well imputation methods performed under three 
different scenarios involving artificial missing data in “time 
series” with different ratios of missing values. The evaluation 
of six methods to impute “missing values”—"interpolation", 
"kalman", "moving average", "last observation carried 
forward", "mean" and "linear trend at point"— were explored 
in terms of "root-mean-square error" and "mean absolute 
percentage error". The "interpolation", "kalman" and "linear 
trend at point" imputation methods outperformed the other 
three by an average of 80% when compared to the "mean" 
imputation method and 30-60% when compared to the "last 
observation carried forward" and "moving average" methods. 
They came to the conclusion that for "time-series" with trend, 
"interpolation", "kalman" and "linear trend at point" 
performed better for imputing successive "missing values". 

Han et al. (2022) proposed a “univariate imputation” 
approach for integrating decomposition method with 
imputation algorithms in their article titled "Univariate 
imputation method for recovering missing data in wastewater 
treatment process." To cope with the nonstationary properties 
of wastewater treatment process data, the “time series” is first 
divided into “seasonal”, “trend”, and “remainder” using 
“seasonal-trend decomposition”. Second, estimates of its 
missing values are provided by using “support vector 
regression” to roughly estimate “nonlinearity” of “trend” and 
“remainder”, respectively. Based on its periodic pattern, a 
“self-similarity decomposition” is used to fill the “seasonal 
component”. Third, the imputation result is created by 
combining all of the imputed results. The imputation 
performance is then assessed using six time series of the 
wastewater treatment process and based on two indicators, 
compared to seven other methods. The experimental findings 
show that, the suggested “univariate imputation” is better for 

“time series” of wastewater treatment processes with various 
missing ratios. 

In their article "On imputation approaches in univariate 
time series," Rantou et al. (2017) used the statistical 
programme R to assess the effectiveness of “imputation 
algorithms” in case  of “univariate time series data”. The 
“imputation methods” are evaluated by three fundamental 
types of “time series” and error metrics namely; “mrse” and
“mape”. 

In their work "Local Average of Nearest Neighbors: 
Univariate Time Series Imputation," Flores et al. (2019) 
introduced two imputation techniques for the “missing data” 
in “univariate time series”. These algorithms have used two 
“algorithms” based on “means” of “nearest neighbours”. The 
first is the neighbourhood average. Neighbors determines the 
“missing value” by averaging the values of the neighbour 
before it and the neighbour after it. The second one is “Local 
Average of Neighbors Neighbors+(LANN+)” that uses the 
distance between neighbours.  

In their article "Efficiency of Imputation Techniques in 
Univariate Time Series," Twumasi-Ankrah et al. (2019) used 
“imputation method” for “univariate time series” missing 
values, depending on specific error metric and characteristics. 

 
III. Missing Data Mechanism 

The distribution of the gaps will depend on what produces 
missing data. In two ways, comprehending this distribution 
might be beneficial, can be used as information for choosing 
suitable “imputation algorithm” and by using a realistic 
simulator that will eliminates “missing data” from the test 
dataset. A simulator of this kind will assist in producing data 
for which, the real value is known, so that effectiveness of 
“imputation algorithm's” can be evaluated. 
“Missing data” mechanisms specify the relationship 

between variables that are observed and those that are 
missing. There are three basic groupings: "missing entirely at 
random (MCAR)", "missing at random (MAR)", and 
"missing not at random (MNAR)". A variable is missing if it 
is neither dependent on observed variables and nor on itself. 
For instance, a house's number of fireplaces is independent of 
itself. It is MNAR if the missingness of a variable is related 
to itself. For instance, the proximity to the market may be a 
key consideration when renting or purchasing a home because 
it is quite convenient to get there on walking. It is MAR if the 
absence of a variable depends on another variable. The use of 
correlations with other variables by imputation algorithms is 
made possible by MAR, which leads to better results than 
MCAR and MNAR. For instance, if a home lacks a garage, 
the garage's capacity or quality will always be lacking 
(Baddoo et al. 2021). 
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The picture of “missing data” mechanisms for 
“univariate”, “temporal series” appears little  different as the 
data only appears to have one variable, while time is 
implicitly assumed that is considered to be a variable when 
developing a dataset's mechanism. Another distinction is that 
“time series” imputation methods can use “time series” 
properties also besides variables to estimate missing values. 
As a result, it is much simpler to estimate “missing values” 
for MCAR data. MAR and MCAR are essentially equivalent 
for “univariate time series” imputation. 
 

IV. Time series imputation for univariate data 
A "univariate time series", is a “time series” that has only one 
observation that is progressively recorded at equal time 
intervals. Imputation is the process of substituting estimations 
for “missing data”. The following studies employs 
“imputation techniques” for “univariate time series”;  
 
4.1 Mean Imputation 
Mean of the “observed values” of the “non-missing 
observations” is calculated that replaces “missing values” 
with mean. This method comes from R's imputeTS packages. 
It uses the function "na_mean" to substitute the “missing 
values” in “time series”. The following formula is used to 
estimate the value; 
 

 = ∑ 

0 /                                (1) 

 
where  nk is the number of observations and yi,  is the observed 
values. 
 
4.2 Last Observation Carried Forward (LOCF)  
On orderly sorted dataset, algorithm locates the first “missing 
value” and then it is imputed with non-missing value 
immediately preceding the missing data. The method in R 
employs imputeTS package, and the function is "na_locf" 
(Phan et al., 2020). 
 
4.3 Kalman smoothing  
The estimates of unknown variables are produced by a series 
of measurements that are observed over time, including 
inaccuracies and noise. These estimates, which use joint 
probability distribution over the variables for each timeframe, 
are more precise than those based on a single measurement 
alone. The algorithm follows two steps. For the prediction 
phase, Kalman smoothing generates estimates of the current 
state variables along with their uncertainty. When the 
subsequent measurement is taken, these estimates are updated 
using a weighted average, with a higher weight given to more 
precise estimates. It is iterative algorithm. Without requiring 
any prior knowledge, it may operate in real time using only 

the most recent input measurements, the previously 
calculated state, and its uncertainty matrix. It assumes that the 
errors have “normal distribution” (Jeong, 2021).The “kalman 
smoothing” to operate on state-space models is of the form; 
 

 =  + ~,
2                       (2) 

 
1 =  +  ~ ,1

2                   (3) 
 

where    ~  ,
2) 

 
where yt = observed data and αt = unobserved. 

The measurement equation, yt means the “observed data” 
is related to the “unobserved” states, 1, transition equation, 
implies the “unobserved” states evolve over time in a 
particular way.“Kalman smoothing” uses “algorithm” to find 
best estimates of . The “kalman smoothing” has been 
applied to the entire time period to get the estimates of the 
states  ,

2  at t=1,2,. ,T. It employs imputeTS package and 
the function “na_kalman” to replace “missing values” in R. 
 
4.4 Seasonally Decomposed Missing Value Imputation  
The algorithm starts with a “Loess Seasonal Decomposition” 
of “time series”. "Time series" is split into "seasonal", "trend" 
and "irregular". The original series' "seasonal" component is 
then removed. In a subsequent step, the deseasonalized series 
is subjected to the selected imputation algorithm, such as 
na_locf, na_ma, etc. As a result, the algorithm is unaffected 
by "seasonal" patterns. The "seasonal" component is 
reintroduced into the de-seasonalized series after the NA gaps 
are replaced. It uses impute TSpackage in R with function 
"na_seadec". 
 
4.5 Moving Average (MA) Imputation 
The average is calculated using the same number of data 
points on either side of the central value in this algorithm. 
This means that if a "missing value" occurs at position i of a 
"time series" data set, the average is computed using 
observations i-1, i-2, and i+1, i+2.The package imputeTS and 
method "na_ma" are used in R. 

The weighting factors decreases exponentially in an 
“exponential weighted moving average”. The observations 
immediately adjacent to a central value i have a weight of 1^2, 
the observations further away (i-2, i+2) have a weight of ½^2, 
the observations further away (i-3,i+3) have a weight of ½^3, 
and so on.  

 
4.6 Imputation by Interpolation 
The na_nterpolation function with the parameters "linear," 
"spline," or "stine" interpolation is used by the imputeTS 
package. The "least square principle" minimises the sum of 
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squares of errors for a polynomial of a given degree. The 
algorithm for "linear interpolation" is as follows: 

If k is the number of “missing data” points in a given “time 
series” dataset, and a1, a2,...ak-1 are constants, and yt represents 
the “missing observation” at time t, consider fitting a 
polynomial of fixed degree k. 

yt = a0 + a1t + a2t2 +...... + ak-1tk                              (4) 
This is calculated using the time series data's observed values. 
The matrix approach is used to obtain the values of a0, a1, 
a2...ak-1. Missing values are calculated at each iteration, 
t=1,2,3,.., T. 
 

V. Error Metric 
We evaluate the effects of three error metrics on imputation 
strategies. 
5.1 Root Mean Square Error (RMSE) 
It measures the spread of predicted errors over actual data 
points means, that it indicates how far or close an estimated 
model's predicted values are to the actual data points(Bokde 
et al., 2018). The formula is as follows: 

RMSE=√∑  − 




1

2

                    (5) 

where N is the sample size,  Y is the actual data and  is the 
predicted data. 
 
5.2 Mean Absolute Error (MAE) 
It is the average of absolute errors, which is the, magnitude of 
difference between the actual and predicted values. It tells 
how large an error is from the predicted, is expected on 
average. 

MAE=
1


∑| − |                             (6)    

 
5.3 Mean Absolute Percentage Error (MAPE) 
It measures the, percentage forecast error. It is used to 
calculate the forecast accuracy using: 

MAPE=(
1


∑
| − |

||
) %      (7) 

 
VI. Experimental Analysis 

The performance of 10 imputation algorithms is examined in 
this study using three reference time series datasets from the 
imputeTS package (Moritz et al, 2015) and one real time 
series data set downloaded from M/o Statistics & PI, Govt. of 
India website, http://www.mospi.gov.in. These datasets are 
widely used in the literature having well-known properties by 
all time series data. 
 
6.1 Datasets 
Following are the four datasets that were used in this study: 

1.Air passengers: The dataset comes from "Time series 
analysis: forecasting and control" (Box et al., 2015) and 
includes 144 monthly total passengers of international airline 
from 1949 to 1960. The dataset shows a strong trend as well 
as seasonality. There are two time series provided for 
comparing imputation algorithm results with this series.One 
series with no missing values that can be used as the basis for 
further analysis and the “imputation algorithm” can be
applied on another NA-based series. 
 
2. Wastewater system:  The “time series” was created using 
data from the 2014 GECCO Industrial Challenge (Martina et 
al., 2014). It has 4552 rows, measured in 10-minute 
increments from 30.11.2010 to 01.01.2011. There are two 
time series provided for comparing imputation algorithm 
results with this series. One series with no missing values that 
can be used as the basis for further analysis, and another is 
NA-based series that is used for “imputation algorithms”. The 
dataset shows significant seasonality but no trend. 
 

1. Heating systems supply temperature: The "time 
series" was created using data from the GECCO 
Industrial Challenge 2015. (Moritz et al., 2015), and 
it was measured in 1 minute steps from 18.11.2013 
- 05:12:00 to 13.01.2015 - 15:08:00. There are 
606837 rows in the Time Series. "Recovering 
missing information in heating system operating 
data" was the topic of this Challenge. The goal is to 
effectively substitute "missing values" in sensor data 
from a heating system. There are two time series 
provided for comparing imputation algorithm results 
with this series. One series with no missing values 
that can be used as the basis for further analysis and 
another NA-based series that is used for “imputation 
algorithms”.There is no trend or seasonality in the 
dataset. 

 

 
Figure 1: Loess seasonal decomposition of Consumer Price I

ndex Dataset 
 
4.Time series of consumer price index: The data has been 
downloaded from M/o Statistics & PI, Govt of India website, 
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http://www.mospi.gov.in. It is a time series data yearly 
measured from 2013 to 2021. It has 108 rows. Missing values 
around 10 % has been  artificially simulated. These missing 
values are then imputed and compared with the actual data. 
The dataset exhibits strong trend and seasonality (Figure 1). 
 
6.2 Line plot to visualize the missing values distribution  
The “ggplot_na_distribution” function  from imputeTS pack
age  depicts the   distribution of “missing values” within “ti
me series”. As a result, “time series” is plotted and whenever 
there is  NA, the back  color  appears  differently. The plot fo
r time series data can be seen below (Figure 2). 
 

 
Figure 2: Distribution of Missing Values for Consumer Price 

Index Dataset 
(Time Series with Highlighted Missing Region) 

 
6.3 Missing Values Statistics
Summary statistics for the "missing values" distribution in 
"univariate time series" are printed by the "statsNA" function 
in imputeTS package and it is summarized for each dataset in 
Table1. 

 
Table 1:Summary of Datasets 

Dataset Length 
of 
Time 
Series 

Missing 
Values 

Percentage of 
Missing 
Values 

No 
of 
Gaps 

Avg Ga
p Size 
 

Longest NA gap (seri
es of consecutive NA
s) 

Most frequent gap size 
 

tsAirgap 144 13 9.03 11 1.1818 
 

3 in a row 
 

1 NA in a row (occurri
ng 10 times) 

tsNH4 4552 883 19.4 155 5.6968 
 

157 in a row 
 

1 NA in a row (occurri
ng 68 times) 

tsHeating 60683
7 
 

57391 
 

9.46 2087 
 

27.4993 
 

258 in a row 
 

2 NA in a row (occurri
ng 104 times) 

tscpi 108 10 9.26 9 1.1111 2 in a row 
 

1 NA in a row (occurri
ng 8 times) 

 
 

VII. Conclusions 
Given that most statistical techniques assume that the data is 
complete and free of “missing values”. Missing data 
constitute the first challenge when developing prediction 
models. It might not be viable or even optimal to handle 
missing data in “univariate time series” using typical 
“imputation algorithms”. Since they differ from multivariate, 
non-time series datasets in several ways, “univariate time 

series” need specific consideration. To carry out an effective 
imputation, time dependencies must be used in place of 
covariates. 
 
 
 
 
 
 

 
Table 2: Comparison of accuracy  

Method Air Passenger Waste Water 
Management 

Heating System Supply 
Temperature 

Consumer Price Index 

RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE 
Mean 34.63 8.90 0.0318 

 
3.79 
 

1.44 0.1108 5.69 
 

1.43 0.0234 5.34 
 

1.30 0.0010 

LOCF 10.66 2.81 0.0104 2.01 
 

0.45 0.0619 3.44 
 

0.63 0.0116 0.38 
 

0.10 0.0007 
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Kalman 
Smoothing 

3.21 0.75 0.0028 1.29 
 

0.37 
 

0.2055    0.18 0.04 0.0003 

Seasonal 
decomposition 

1.92 0.47 0.0018 0.83 
 

0.22 
 

0.1688 
 

2.66 
 

0.45 
 

0.0080 0.11 0.03 0.0002 

seasonal 
imputation using 
mean

34.77 
 

9.33 0.0345 3.29 
 

1.25 0.1024 4.61 1.09 0.0184 5.26 1.27 0.0010 

Simple moving 
average 

9.67 
 

2.37 0.0085 1.36 
 

0.34 0.0413 2.82 
 

0.46 0.0081 
 

0.32 0.090 0.0006 

Exponential 
weighted 
moving average 

8.90 
 

1.92 0.0070 1.20 
 

0.29 0.0368 2.80 
 

0.45 
 

0.0080 
 

0.21 0.05 0.0004 

Linear 
interpolation 

6.09 
 

1.57 0.0057 1.06 
 

0.26 0.0326 2.39 
 

0.38 0.0065 0.13 0.04 0.0003 

Spline 
interpolation 

5.50 1.40 
 

0.0052 
 

2.06 
 

0.49 0.1187 5.64 
 

0.68 0.0265 0.15 0.37 0.0003 

Stine 
interpolation 

6.04 
 

1.51 0.0056 1.16 
 

0.29 0.0351 2.45 
 

0.36 0.0064 0.11 0.03 0.0002 

The methods namely “mean”, “last observation carried 
forward”, “kalman smoothing”, “seasonal decomposition 
using interpolation”, “seasonal imputation using mean”, 
“moving average” and “moving average with exponential 
weighting”, “linear interpolation”, “spline interpolation” and 
“stine interpolation” has been applied on tsAirgap, tsNH4, 
and tsHeating data, available in the R-package imputeTS. The 
precision is expressed as “rmse”, “mae” and “mape” (Table 
2). “Seasonal decomposition” performs better than other 
techniques on the time series having seasonality characteristic 
namely tsAirgap and tsNH4 having seasonality followed by 
“linear interpolation”, and “kalman kmoothing”. The same 
techniques were also applied on real data i.e. consumer price 
index data that exhibhits strong seasonality. In this case, also 
“seasonal decomposition using interpolation” followed by 
“linear interpolation” performs better. Also, plots at figure 3 
and figure 4 clearly shows that imputed values are quite close 
to the truth values in case of consumer price index data. 

 
Figure 3: "Imputed Values for Consumer Price Index Data ", 
(Visualization of missing value replacements in case of seas

onal decomposition) 

 
 
Figure 4: "Imputed Values for Consumer Price Index Data ", 
(Visualization of missing value replacements in case of Kal

man Filtering) 
 

The primary goal of this paper was to compare and 
quantify the performance of “imputation techniques” while 
dealing with “univariate time series”. When handling 
“missing data” in “univariate time series”, the results of our 
experiment indicates that seasonal decomposition perfoms 
well with the data having seasonality characteristics followed 
by “linear interpolation” and  “kalman structural models 
using smoothing” as the most effective algorithms. 
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