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SUMMARY
The demand for acceptable disaggregated level statistics from sample surveys has grown substantially over the past decades due to their 

extensive and varied use in public and private sectors. Basically, it is the main endeavor of ‘Small area estimation (SAE)’ approach to produce sound 
prediction of a target statistic for small domains to answer the problem of small sample sizes. The traditional survey estimation approaches are not 
suitable enough for generating disaggregate or small domain level estimates because of sample size problem. The SAE techniques therefore provide a 
feasible way to produce the reliable estimates at disaggregate level from the existing survey data.This paper explores a spatial dependent aggregated 
level Hierarchical Bayes (HB) model for SAE to estimate the yield for paddy (green) crop at district level in the state of Uttar Pradesh in India. The 
approach uses survey data from the Improvement of crop statistics (ICS) scheme collected by National Sample Survey Office (NSSO) and linked with 
Population Census. A considerable gain has been obtained while exploiting spatial information in aggregated level small area model. 

Keywords: Aggregated level; Small area estimation; Spatial Information.

1. INTRODUCTION

In survey sampling we attempt to produce
a concrete statistical inference about the target 
population and hence endeavors of statistical theory 
and methodology supporting efficient survey design 
prioritize this objective only. Relevantly, our target 
parameters may be the characteristics pertaining to 
whole population for which reliable design-consistent 
and design-unbiased direct estimates are available in 
the literature or we may either be interested to develop 
valid estimates for subpopulations (domains). Relying 
on design-based approach in generating official 
statistics for such subpopulations or domains may 
end up with result having poor precision or reliability, 
because domain-specific sample size is not generally 
large enough to guarantee reliable estimates for all the 
target subpopulations, such domains are also referred 
as ‘Small areas’. Further, model-assisted approaches 
are design-based while assisted by models that result 
in more accurate design-unbiased estimates but 

still suffer from instability in case of small sample 
sizes. Therefore, model-dependent or model-based 
approaches are widely preferred and extensively used 
in producing acceptable small domain statistics (Rao, 
2003). Eventually, model-based estimators suffer 
from design bias problem but their overall accuracy 
measures remain small. Following this advantage, the 
demand for large scale acceptable small area statistics 
from sample surveys has to be served through suitable 
“Small area estimation (SAE)” approaches.

Small areas may be geographical regions (e.g., 
districts, municipalities, blocks, tehsils, gram 
panchayets, etc.), particular demographic groups 
(e.g., age-sex-race groups within geographical areas) 
or cross classification of both. Sample sizes for such 
small domains are small enough (even zero) to avail 
acceptable direct estimates with adequate precision, 
hence it becomes necessary to employ oversampling 
to increase sample size or to “borrow strength” from 
related areas or time (or both) through specific linking 
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models. Oversampling is not a feasible approach, 
because that may leave other domains with small 
sample sizes as total sample sizes is fixed by the 
budget beforehand, hence incurring extra cost cannot 
be considered. Thus, we have to take recourse to small 
area estimation methodologies in order to generate 
reliable small area statistics which can efficiently be 
utilized for policy making, localized development at 
small domain levels. However, to draw needful and 
robust inference from small domains it is necessary that 
specified model for the situation under consideration 
is a good fit to the available sample data and again 
success of this kind of models also depends on good 
amount of covariates. Informative auxiliary variates 
may probably explain unknown structures in the data, 
along with this incorporation of area-specific random 
effects is crucial to model unstructured heterogeneity 
across areas which may not possibly be captured 
by fixed covariates. Based on the level of auxiliary 
information available, there are basically two kinds 
of small area models, e.g., area level models utilizes 
aggregated auxiliary and target information and 
unit level models are based on unit-specific variable 
information. In absence of unit-wise data, area level 
models are broadly accepted. 

Fay and Herriot (1979) first described the small 
area estimation method under area level small area 
model to estimate the mean per capita income in 
predefined small areas within countries. Their model 
uses direct survey estimates and area level covariates 
to obtain small area estimates. The application of 
basic FH model and its various extensions are widely 
available in various real life studies and literatures to 
solve the small domain estimation problems (Pratesi 
and Salvati, 2009; Molina et al., 2009; Chandra et al., 
2011; Chandra, 2013; Porter et al., 2014; Pratesi and 
Salvati, 2016; Chandra et  al., 2017). Potentiality 
of such small area models to provide efficient small 
domain estimates has magnificent importance in micro 
or disaggregates level planning processes. 

SAE models are based on linear mixed modeling 
framework and incorporate random area-specific 
effects which account for unstructured heterogeneity 
across areas beyond that is explained by auxiliary 
variables included in the fixed effect part of the model 
(Rao and Molina, 2015). However, an implicit 
independence assumption is also imposed on the 
random effect while modeling such component which 

implies different small areas are simply uncorrelated. 
But, such postulation may not hold good in practice 
as there appears no good reason why neighbouring 
areas should not be correlated (Chandra, 2013). Area 
boundaries defining the small domains are typically 
arbitrarily set, hence neighbouring effect can never 
be ignored. Particularly, as an example in agricultural, 
environmental data neighbouring areas exhibit strong 
spatial dependency and therefore independence 
assumption of random area effects seems questionable. 
In this regard, the article is set to explore spatial 
association between small areas via spatial model. 
Chandra (2013) and Chandra et al. (2017) has earlier 
attempted to investigate such spatial association via 
Simultaneous Autoregressive (SAR) and Spatial Non 
Stationary process under frequentist framework of 
SAE. In this paper we explore such spatial association 
via Bayesian prospect. One of the advantages of 
using Bayes framework is the direct quantification of 
uncertainty. In addition, this approach leads to more 
reasonable interval estimates.

In India, the yield rate estimates are developed 
on the basis of scientifically designed crop-cutting 
experiments (CCEs) conducted under the scheme 
of General Crop Estimation Surveys (GCES). More 
than 9,50,000 CCEs are conducted annually to cover 
68 crops (52 food and 16 non-food) at national level. 
This sample size is sufficient enough to obtain precise 
estimates of crop yield (i.e. production per hectare of 
land) at the district level. But due to huge spectrum 
of work, along with some infrastructural and resource 
constraints, the data quality of GCES is questionable. 
To improve the quality of data collected under the 
GCES, a scheme titled Improvement of crop statistics 
(ICS) has been introduced by the Directorate of 
Economics and Statistics, Ministry of Agriculture 
and Farmers’ Welfare, Government of India. Under 
this scheme, quality check on the field operation of 
GCES is carried out by supervising around 30,000 
CCEs by NSSO and State Government supervisory 
officers. The findings of the ICS results reveal that the 
CCEs are generally not carried out properly resulting 
in data that lack acceptable quality (Chandra, 2013). 
Therefore the need is to reduce the sample size 
under GCES. However, with reduced sample sizes, 
the estimates produced at district level may not be 
reliable. Hence, to deal the problem of small sample 
sizes, SAE approach detailed in this article can be a 
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proficient alternative. Basically, our endeavor here is to 
explore SAR process under Hierarchical Bayes (HB) 
SAE framework to estimate yield for paddy crop at 
district level in the state of Uttar Pradesh in India. As 
an illustration, yield for paddy (green) crop at district 
level in the state of Uttar Pradesh in India is being 
taken up from ICS scheme by National Sample Survey 
Office (NSSO) and linked with Population Census.

2. DESCRIPTIONS OF DATA

In India each state are consist of districts and
districts are important domains for planning process 
and policy formulation. In estimating quantities like 
yield, state level estimates are not able to represent 
regional scenario. Hence, SAE methodology sets an 
important step in deriving out micro level estimates 
through borrowing strength from related sources. In 
this article, we consider an aggregated level or area-
level random effect model for SAE. Area level small 
area models require area-specific information on direct 
survey estimates and covariates. Here, the variable of 
interest is yield for paddy (green) crop. Data pertaining 
to supervised Crop cutting experiments (CCE) on 
paddy (green) crop under the ICS scheme for the 
kharif season for the state of Uttar Pradesh in India 
is collected during the year 2009–2010. The aim is to 
estimate the yield for paddy (green) crop at the district 
level. In the state of Uttar Pradesh, CCE is carried out 
in the plots of form equilateral triangle of side 10 m 
each and with total area of 43.30 m2. Therefore, yield 
rate for paddy (green) crop is recorded as gram per 
43.12 m2. Auxiliary variables required for the study are 
obtained from Population census 2001. However, it 
is expected that covariates used in the study are not 
going to change significantly over a short period of 
time. In the state of Uttar Pradesh there are 70 districts; 
however, supervision on a sub-sample of CCEs work 
under the ICS scheme is carried out in 58 districts 
only and there is no sample data for the remaining 12 
districts. So, these 12 districts are the out-of-sample 
districts. The area-specific sample sizes for 58 sample 
districts range from 4 to 28 CCEs with an average of 
11 (Fig. 1). In few districts, the sample size is small 
so the traditional sample survey estimation approaches 
will not lead to reasonable estimate. Additionally in 
12 non-sample districts, direct survey estimation 
approach which is based on only domain-specific 
sample data fails for such districts. SAE technique 
enables us to obtain precise small area estimates not 

only for districts with negligible sample sizes but also 
for non-sample districts, where the direct estimation 
approach typically incapable.

The auxiliary variables used in the study at area 
level are drawn from Indian Population Census 2001. 
Initially, there were 121 covariates available for study. 
Therefore, preliminary data analysis was carried out to 
select appropriate covariates for SAE modeling. First 
examining the correlation of each of the covariates with 
the target variable (direct survey estimates), variables 
with reasonable good correlation has been retained for 
further analysis. Finally, based on step-wise regression 
method two significant variables, average household 
size (HH_SIZE) and female population of marginal 
household (MARG_HH_F) with Akaike information 
criterion (AIC) value 1138.9 has been included 
for SAE. Note that for SAE of 12 out-of-sampled 
districts same two covariates may be used, since the 
underlying model for sample areas also holds for 
out-of-sample districts. The basic theory of SAE has 
been described in the next section considering 
Bayesian perspective. Hierarchical Bayes approach 
has been implemented for illustration purpose in 
estimating average paddy (green) crop yield at 
district level in the state of Uttar Pradesh.

Fig. 1. Distribution of district-specific sample sizes in sample districts

3. �HIERARCHICAL BAYES METHODOLOGY
FOR SAE

Let us introduce some notation, U denotes the
finite population of interest of size N partitioned into 
m disjoint small areas, a sample s of size n is drawn 
from this population with a given survey design. 
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The set of population units in area i is denoted as 
Ui with known size Ni, such that 1

m
i iU U= =  and

1
m

ii N N= =∑ . Following standard practice, s and r
denotes the units in the sampled and non-sampled 
parts of the population. With Ni and ni respectively 
being the population and sample size from small area 
i (i=1,…,m), the units making up the sample in area i 
are denoted by si, so that 1

m
i is s= =  and 1

m
ii n n= =∑ .

Basic area level FH model combines direct aggregate 
(district) level survey estimates with the available 
auxiliary information obtained from varied sources, 
e.g., census or administrative records. Thus the model
has two components,

(1)	 Sampling model for the direct survey estimates
(2)	 Linking model to incorporate area-specific 

auxiliary information and random area effect 
through linear mixed modeling framework

For estimating small area population mean, 
assume that iy  denotes the direct survey estimate for 
unobservable population level quantities iY , hence the 
sampling model for iy  is expressed as follows,

Sampling model: yi = Yi + ei ,i  = 1 , ...,, m         (1)

where, ie ’s are independent sampling error 
assumed to have zero mean with known sampling 
variance 2

eiσ . Now, the linking model of iY  can be 
written as,

Linking model:Yi = x'i β + vi , i = 1,...,m� (2)

where, ′ix  represent area level auxiliary 
information, β  is the regression coefficient or fixed 
effect parameter and iv  being the area-specific random 
effect, independent and identically distributed as 

( )iE v = 0 and ( ) 2
i vVar v σ= . Random area-specific

effects are included in the linking model to account for 
between areas variation beyond that is explained by 
auxiliary variables in the fixed part of the model. Two 
random errors vi and ei are independent of each other 
within and across areas (districts). So, the area level 
FH model can be written in combined form as below,

yi = x'i β + vi + ei , i = 1,..., m (3)

Aggregating m-area-level model given by 
equation (3) leads to the population-level version of 
the random effect model

y = Xβ + Zv + e (4)

where ( )1,..., my y ′=y  is the 1m ×  vector of direct

differences among small areas, ( )1,..., mv v ′=v  is a 1m ×

vector of domain random effects and ( )1,...,eme ′=e
is the m-component vector of sampling errors with 

( )0,N∼e Ω  where { }2diag ;1ei i mσ= ≤ ≤Ω  is the 
matrix of design variances. 

In order to estimate small area population mean, 
several authors have considered EBLUP (Empirical 
Best Linear Unbiased Predictor) of Yi considering 
frequentist perspective (Chandra, 2013; Pratesi 
and Salvati, 2008). But this approach requires an 
analytical expression of measure of precision which 
is based on very some approximation. In contrast, the 
strategic advantage in considering Bayesian approach 
is that, here estimations are described by assuming 
particular probability distributions, which render the 
opportunities to analyze the uncertainties involved in 
the decision process. Accordingly potential Bayesian 
analogue of FH model can be suitably considered rather 
its frequentist version. Particularly, Hierarchical Bayes 
(HB) method is implemented in this article employing 
Gibbs sampling approach. In the HB method, together 
with prior distribution of the parameters, prior of 
the hyper-parameters (model parameters) are also 
specified then inferences are made from the posterior 
distributions. A parameter is estimated by posterior 
mean and posterior variance is taken as the measure of 
the error or uncertainty of the estimates. HB approach 
can effectively deal with complex small area models 
using Monte Carlo Markov Chain (MCMC), which 
overcomes the computational difficulties of high-
dimensional integrations of posterior densities (You 
and Rao, 2002; Anjoy et al., 2018).The HB alternative 
of FH model (4) is expressed as below.

3.1 fh Model

in Bayesian analysis, because inferences drawn from 
posterior densities depend on wide range of prior 

Sampling model: y |Y ~ N Y( , Ω)

Linking model: Y | ,β N~ (Xσ σv v
2 2,β ZZ′)  

Choice of prior distributions plays a crucial role

survey estimates, = (X x1,...,′ ′mx )′  be ×m p  matrix
of auxiliary variates, 1(z ,...,z )mZ =  ′ is a matrix of 
known covariates of dimension ×m m characterizing 
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distributions. Choice of improper or non-informative 
prior may be problematic due to small amount of 
data (Lambert and Sutton, 2005). Hence, selection of 
prior distributions should be preceded by sensitivity 
analysis under various parameterization processes. 
Generally, prior for the hyper-parameters (β, σ  ) are 
set as, individual  β has improper uniform prior on 

pR  and 2
0 0~ ( , )v IG a bσ , where 0 0( , )a b  are known 

positive quantity, usually set to be very small to reflect 
vague knowledge about 2

vσ . Here, distribution of β  
has been taken to be N(0, 10-6) and distribution of 2

vσ
has been taken to be IG(0.1, 0.1).

The FH model (4) is based on one of the 
implicit assumption that random area effects are 
distributed independently of each other. However, 
as evident from many real life examples, such as in 
agricultural, environmental or epidemiological data it 
is quite common to see that neighbouring small areas 
influences each other up to a great extent (Mercer et al., 
2014; Mercer et al., 2015). Again such influences tend 
to decay as the distances between two areas increases. 
Keeping all this in regard, the obvious spatial 
association between neighbouring areas cannot be 
ignored in small area modeling while such correlation 
is specifically high enough. Furthermore, incorporation 
of such spatial information may significantly improve 
the model accuracy. Therefore, linear regression model 
with spatial dependence in error structure, particularly 
SAR error process is considered motivated from 
Chandra, 2013. But, our attempt here is to implement 
HB alternative of SAR model. 

Let, define the domain random effect 

( )1,..., mv v ′=v  satisfy,

ρ=v Wv + u (5)

where ρ  is the spatial autoregressive coefficient 
measuring the strength of spatial relationship. W is 
a proximity matrix of order m which describes how 
random effects from neighboring areas are related. 
The elements of W take non-zero values only for 
those pairs of areas that are adjacent. Generally, for 
ease of interpretation, this matrix is defined in row-
standardized form; in which case ρ  is called the 
spatial autocorrelation parameter. Formally, the 
element wjk (j, k = 1,...,m) of a contiguity matrix takes 
the value 1 if area j shares an edge with area k and 0 
otherwise. In a row-standardized form this becomes,

0 otherwise
j

jk

t 1 if j and k are contiguous,
w

−= 
 (6)

where jt  is the total number of areas that share an 
edge with area j (including area j itself). Contiguity 
matrix W provides a simplest way to define spatial 
interaction between adjoining small areas. However, 
exploring this matrix in a better way while defining 
the elements jkw  as function of the length of shared 
border between neighboring areas or as a function of 
the distance between the area is crucial in producing 
reliable small area estimates. Let, il  be the coordinates 
of an arbitrary spatial location (longitude and latitude) 
in ith small area; generally this will be its centroid. 
Then the spatial distances between sample locations 
( ,i jl l ) can be given as , || ||j k j kd l l= − . Now consider 
various specification of weight matrix W defined as a 
function of distance measure.

1. Weights are assigned in proportion to distance
between the areas as

{ } ,jk j kw d= =W � (7)

2. Weights are defined as inverse of the distance
between the areas as

{ } ( ) 1

,jk j kw d
−

= =W (8)

Now the HB version of SAR model is expressed 
as below,

SAR model

Sampling model: ~ ( , )Ny | Y Y Ω

Linking model: ( )

( )

2 2

1

, , ~ ( ,

)

u u m

m

Nρ σ σ ρ

ρ
−

 −

′ ′− 

Y | X Z I W

I W Z

β β

For SAR model, distribution of individual β  has 
been taken to be N(0, 10-6) and distribution of 2

uσ  has 
been taken to be IG(0.1, 0.1). The value of ρ coefficient 
is treated as constant (obtained from the Spatial-
EBLUP estimation based on frequentist approach). 
HB small domain estimates are computed for all the 
models using Metropolis-Hastings algorithm, drawing 
random samples from full conditional distributions of 
posterior quantities.

Here, four HB models will be explored including 
FH model and SAR model with three different 
structures for proximity matrix W as defined in 

2
v

3.2
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equation (6), (7) and (8). SAR models considering 
three different W structures denoted hereby as HB.S1, 
HB.S2 and HB.S3. The HB version of three SAR 
models, e.g., HB.S1, HB.S2 and HB.S3 is same except 
for different contiguity matrix. 

4. EMPIRICAL ILLUSTRATIONS

This article attempts to study whether it is
possible to achieve a substantial gain in spatially 
correlated random effect process (i.e., SAR model) 
over the non-spatial counterpart (i.e., FH model) 
as well as traditional direct estimation approach. 
HB version of EBLUP, HB.S1, HB.S2 and HB.S3 
model is implemented therefore to see their relative 
proficiency in estimating yield of paddy (green) crop 
in each small area. To implement the Gibbs sampler, 
three independent chains were used each of length 
20000. The first 10000 iterations were deleted as 
“burn-in” periods. Potential scale reduction factor R̂  
determines the convergence success. Stationarity is 
attained when ˆ 1R =  (Rao 2003). It is worth noting 
that choice of prior distribution plays a crucial role 
in Bayesian analysis because inferences drawn from 
posterior distribution depend on a wide range of prior 
distributions (Anjoy et  al., 2018). In this study the 
prior for 2

uσ  has been taken as IG(0.1, 0.1). However 
other choices of prior, example σ 2 ~ uniform (0,100)u

or 2 ~ uniform(0,1000)uσ  can also be investigated. 

Table 1 represents the descriptive statistics of 
CV% for direct estimates as well a small area model 
based estimates. Estimates with smaller CV% are 
preferred or more reliable than others. Comparing all 
the HB models, it is to be noted that the precision level 
of HB.S3 is much better than all other model based 
alternatives. HB.S3 has manifested substantially 
improved modeling power due to its special structure 
of proximity matrix where the weights are defined by 
decreasing function of distance. In direct estimation 
approach CV% was ranging from 3.01 to 49.15, 
whereas, in HB.S3 the range of CV% is 2.22–11.58. 
In terms of specifically mean, median, Q3 and 
maximum CV% all the model based method has 
outperformed over the direct survey based 
approach with HB.S3 being the best. 

The reliability of model based estimates can be 
validated from bias diagnostics result also apart from 
CV%. The bias diagnostics are used to investigate 

whether the model based estimates are less extreme or 
not when compared to the direct survey estimates. If 
model based estimates are close to the true values, the 
regression of the direct estimates on the model based 
estimates should be similar. Plotting the direct estimates 
on the Y-axis and model-based estimates on the X-axis, 
divergence of regression line can be observed from 
Y = X line and test for intercept = 0 and slope = 1. 
The bias scatter plots of the direct estimates against 
the model based estimates generated by different 
small area predictor are shown in Fig. 2. The results 
for the bias test are given in Table 2. The plots in Fig. 2 
show that the model-based estimates are less extreme 
when compared to the direct estimates, demonstrating 
the typical SAE outcome of shrinking more extreme 
values towards the average. Reasonably good fit of 
HB.S3 is notable here. So, finally, HB.S3 can be opted 
as most proficient model based alternative to provide 
district level yield estimates.

Table 2. Bias-diagnostics test results for different small area predictor

Predictor Parameters Estimate Standard 
error Probability

EBLUP Intercept 2746.97 315.02 <0.0001

Model based 
estimate

0.81 0.02 <0.0001

HB.S1 Intercept 2580.10 425.48 <0.0001

Model based 
estimate

0.82 0.03 <0.0001

HB.S2 Intercept 2920.24 422.56 <0.0001

Model based 
estimate

0.81 0.03 <0.0001

HB.S3 Intercept 10546.29 1002.66 <0.0001

Model based 
estimate

0.33 0.06 <0.0001

District-wise estimates of yield implementing 
direct as well as HB.S3 model has been furnished in 
Table 3 along with 95% credible interval and CV% 
for both sample and out-of-sample districts. Direct 

Table 1. Summary of percentage coefficient of variation (%CV) 
generated by the different methods for sample districts

Values Direct EBLUP HB.S1 HB.S2 HB.S3

Minimum 3.01 3.05 3.01 2.99 2.22

Q1 10.04 9.75 9.52 9.03 3.47

Mean 15.14 13.04 12.21 11.62 4.37

Median 13.42 12.39 11.92 11.27 4.09

Q3 19.46 16.68 15.35 13.80 4.71

Maximum 49.15 28.54 22.83 27.58 11.58

,
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estimation approach cannot provide estimate for out-
of-sample districts. HB.S3 model therefore may be 
implemented for providing yield estimate for 12 out-
of-sample districts based on auxiliary variable and 
estimate of hyper-parameter β . In Table 3, more than 
20% CV for 11 districts has made the direct estimates 
in such districts highly unstable. A significant 
reduction in %CV has been achieved thereafter using 
the HB.S3 method over traditional direct estimation 
method, thus has resulted stable and precise yield 
estimates generated by HB.S3 method. Fig. 3 displays 
the graphical representation for district level values of 
% CV in increasing order respectively implementing 
direct and HB.S3 estimation methods. Average yield 

estimate aggregated over 58-sample districts by direct 
estimation approach is 15498 gram/43.12 m2 and by 
HB.S3 estimation approach is 15635 gram/43.12 m2.

5. CONCLUSIONS

The potentiality of SAE methodologies to
generate reliable small domain inference is now quite 
established fact from varied theoretical researches, 
what needed is its real life implementation and 
applications. To strengthen the micro level planning, 
disaggregate level estimates are often required and 
small area models serve this purpose both adequately 
and efficiently. In this context, the current study also 

EBLUP hB.S1

HB.S2                            H                            B.S3

Fig. 2. Bias diagnostic plots for sample districts. Direct estimates versus model based estimates,  
y = x line (solid) and linear regression fit line (dashed)
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Table 3. District-wise estimates of paddy (green) crop yield (gram per 43.12 m2) along with 95% confidence interval and 
percentage CV using direct and HB.S3 estimation approach

Districts
Direct estimation HB estimation (HB.S3 model)

Estimates Lower Upper %CV Estimates Lower Upper %CV

Saharanpur 19575 14574 24576 13.04 13513 12097 14929 5.34

Muzaffarnagar 23483 14035 32932 20.53 14223 13453 14994 2.76

Bijnor 19442 16669 22214 7.28 17522 16324 18719 3.49

Moradabad 17700 11916 23484 16.67 17135 16068 18202 3.18

Rampur 17250 16234 18266 3.01 15647 14968 16327 2.22

Jyotiba Phule Nagar 10850 7940 13760 13.68 16697 15413 17981 3.92

Ghaziabad 16800 6581 27019 31.03 17583 16138 19028 4.19

Bulandshahar 17418 13443 21393 11.64 20264 18571 21956 4.26

Aligarh 12419 7605 17232 19.77 17498 16331 18665 3.40

Mathura 10483 4880 16085 27.27 15837 14367 17307 4.73

Etah 12125 9813 14437 9.73 14166 12981 15352 4.27

Mainpuri 14019 7814 20224 22.58 13655 12707 14604 3.54

Budaun 12721 8968 16475 15.05 13676 12498 14855 4.40

Bareilly 13511 10021 17000 13.18 14814 13545 16084 4.37

Pilibhit 14938 9098 20777 19.94 13348 11928 14769 5.43

Shahjahanpur 18863 16560 21165 6.23 14640 13616 15663 3.57

Kheri 14975 11638 18312 11.37 14757 13455 16059 4.50

Sitapur 15986 11880 20093 13.11 17030 15627 18432 4.20

Hardoi 19286 16494 22078 7.39 20254 18970 21537 3.23

Unnao 12843 9841 15844 11.92 19758 18550 20966 3.12

Lucknow 17331 10170 24492 21.08 18938 17608 20269 3.58

Rae Bareli 19506 16053 22958 9.03 17798 16501 19095 3.72

Farrukhabad 8880 5582 12178 18.95 16503 15438 17567 3.29

Kannauj 34050 30416 37684 5.45 21360 19672 23048 4.03

Etawah 15463 13925 17000 5.07 16014 14858 17170 3.68

Auraiya 23717 19085 28348 9.96 16021 14588 17453 4.56

Kanpur Dehat 21200 16705 25695 10.82 18383 17116 19649 3.51

Kanpur Nagar 15375 10172 20578 17.27 16589 15249 17930 4.12

Banda 8888 326 17449 49.15 16166 14752 17579 4.46

Fatehpur 14612 8853 20371 20.11 17366 16200 18533 3.43

Pratapgarh 16304 11665 20942 14.52 16413 15384 17441 3.20

Kaushambi 15450 7295 23605 26.93 16511 15425 17598 3.36

Allahabad 19465 14994 23936 11.72 20400 18022 22778 5.95

Barabanki 18668 14600 22736 11.12 18328 16996 19661 3.71

Faizabad 16379 11802 20957 14.26 16419 14874 17963 4.80

Ambedkar Nagar 17692 14417 20966 9.44 13275 12687 13862 2.26

Sultanpur 16609 13493 19725 9.57 16490 14895 18085 4.93

Bahraich 14714 13593 15835 3.89 15044 14189 15900 2.90

Shrawasti 15075 9490 20660 18.90 16065 14885 17245 3.75

Balrampur 11975 8541 15409 14.63 14084 13158 15010 3.35

Gonda 16981 14828 19134 6.47 14752 13903 15601 2.94

Siddharth Nagar 12829 9422 16235 13.55 15522 13959 17085 5.14

Basti 14268 9736 18800 16.21 14557 13233 15882 4.64
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reflects a suitable example of why small area model 
based methods should be preferred. Along with this, 
the relative proficiency of using existing spatial 
information in aggregated level small area model is also 
established than the non-spatial alternative. However, 
the study can also be extended to account for spatial 
non-stationarity and the same can be implemented in 
solving various small domain inference problems. As 
a profound application, the suitability of this study can 
be found in schemes like Pradhan Mantri Fasal Bima 
Yojana (PMFBY) to generate the micro level estimates 
of crop yield from existing survey data. 
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Districts
Direct estimation HB estimation (HB.S3 model)

Estimates Lower Upper %CV Estimates Lower Upper %CV

Sant Kabir Nagar 13319 11660 14978 6.35 13284 12114 14455 4.50

Mahrajganj 21690 16526 26854 12.15 15716 14573 16859 3.71

Gorakhpur 12164 9129 15199 12.73 13924 12979 14869 3.46

Kushinagar 19343 13702 24984 14.88 14175 12583 15768 5.73

Deoria 8364 5482 11246 17.58 10177 8950 11403 6.15

Azamgarh 11957 9961 13953 8.52 12326 11219 13433 4.58

Mau 9820 6039 13601 19.64 10916 9510 12321 6.57

Ballia 7029 4167 9892 20.78 9435 7732 11138 9.21

Jaunpur 16990 13571 20409 10.27 15336 14106 16566 4.09

Ghazipur 10858 8029 13687 13.29 12976 11937 14016 4.09

Chandauli 12000 7382 16618 19.63 13342 12293 14391 4.01

Varanasi 17665 12341 22989 15.38 17789 15800 19777 5.70

Sant Ravidas Nagar 6693 1943 11443 36.21 8845 6837 10852 11.58

Mirzapur 15625 12039 19211 11.71 15671 14218 17125 4.73

Sonbhadra 15283 7347 23220 26.49 17906 15229 20583 7.63

Meerut* 15112 13115 17109 6.74

Baghpat* 12337 10158 14516 9.01

Gautam Buddha Nagar* 16757 14769 18745 6.05

Hathras* 15333 13259 17406 6.9

Agra* 14957 12895 17019 7.03

Firozabad* 14439 12362 16516 7.33

Jalaun* 15197 13172 17222 6.79

Jhansi* 17695 15628 19762 5.96

Lalitpur* 17040 15000 19080 6.1

Hamirpur* 16612 14611 18613 6.15

Mahoba* 16307 14258 18355 6.41

Chitrakoot* 14869 12837 16901 6.97

* Indicates out-of-sample districts

Fig. 3. District-wise percentage CV for direct (dotted line) and HB (solid 
line) estimation method (HB.S3)
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