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Hierarchical Bayes estimation of small area means under
a spatial nonstationary Fay–Herriot model

Priyanka Anjoy and Hukum Chandra

Department of Agricultural Statistics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India

ABSTRACT
The Fay–Herriot (FH) model is widely used in small area estimation (SAE)
for aggregated level data, but in several applications presence of spatial
effect between contiguous or neighboring region cannot be denied which
is not handled by this model. Conditional Autoregressive and
Simultaneous Autoregressive specifications do incorporate spatial associa-
tionship while taking into account the spatial correlation effects among
areas. However, none of these approaches implement the idea of spatially
varying covariates through spatially dependent fixed effect parameters.
Such approach in statistics is known as spatial nonstationarity. This article
introduces spatial nonstationary version of FH model considering hierarch-
ical Bayesian paradigm and then deliberates estimation of small area
means. The proposed SAE approach is evaluated through extensive simula-
tion studies. The empirical results from simulation studies demonstrate the
superiority of proposed spatial nonstationary SAE method over the non-
spatial and stationary alternatives. The method is also applied to estimate
paddy (green) crop yield at district level in the state of Uttar Pradesh in
India using survey data from the improvement of crop statistics scheme
and linked with Census data. A spatial map presents a quick view to the
regional variations or disparity in district level yield estimates and are cer-
tainly helpful to the decision makers for identifying the regions and areas
requiring more attention for designing targeted interventions and policy
development.
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1. Introduction

Sample surveys are designed to produce reliable and concrete statistical inference about the target
population. Direct survey estimates based on area specific sample data are known to represent
large target regions or aggregate of small areas (such as national, state, province etc.). But small
area inference based on these direct estimates typically fails due to nonavailability of sufficient
area-specific sample sizes. By small area we mean subpopulations or domains which were
unplanned during designing of large-scale sample surveys. Contextually, model-based approaches
have continually gained attention to provide acceptable estimates for such small area or small
domain, popularly known as small area estimation (SAE) approach. In the context of the 2030
agenda of sustainable development goals (SDGs), there is continual emphasis on decentralized
level statistics for micro level planning, policy formulation and targeted upliftment. To reconcile
the need for reliable and representative disaggregate level official statistics, SAE is very relevant
and need of the day. Two type of small area models are basically practiced in various real life
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applications of SAE approach. Unit level models are implemented wherever we have unit-specific
variable information; area level models are utilized with aggregated variable information on target
and auxiliary variates. Small area inferences drawn from these models are essentially based on the
idea of borrowing information/strength from related areas and sources (such as census or admin-
istrative record) to improve effective sample sizes of particular small domain (Rao and Molina
2015). Hence, small area model-based approach finally results in precise and reliable estimates,
that is, smaller percentage coefficient of variation (CV) compared to those direct survey estimates
(You and Zhou 2011). Since a decade economic planning is becoming more decentralized, there-
fore importance of micro-level statistics at lower level of administration cannot be undermined.
Micro-level statistics is also essential to target social and spatial heterogeneity in the programmes
and strategies aimed at alleviating the inter-personal and inter-regional inequalities.

This article focuses on area (or aggregate) level small area models to improve the direct survey
estimates. The pioneering work of Fay and Herriot (1979) has yielded Fay–Herriot (FH) model
which is implemented at a great scale to draw needful area level small area inference. The mixed
modeling framework of area level FH model allows us to incorporate fixed effect as well as area
random effects. A good number of covariates in the fixed effect part certainly influences the par-
ameter estimation, but random effect component captures the unexplained heterogeneity between
areas beyond that is revealed by auxiliary information (Rao 2003). However, a restrictive assump-
tion on area random effects is that random errors are independent, identical and normally dis-
tributed. Such restrictive assumption is necessary for mean squared errors (MSE) estimation
working under a frequentist perspective. But difficult to justify the validity of such postulation in
various real life situations particularly variables involving spatial association among geographical
units or areas (You and Zhou 2011; Chandra, Salvati, and Chambers 2017). In agricultural, envir-
onmental or health estimation problems application of spatial models are therefore quite reason-
able because of the presence of spatial correlation among areas. Area level version of Conditional
Autoregressive (CAR) and Simultaneous Autoregressive (SAR) are popular and widely imple-
mented to provide domain-specific reliable estimates in case of spatial dependency (Pratesi and
Salvati 2008; Chandra 2013). However, it’s worth noting that, one common consideration in the
discussed area level FH, SAR, CAR or other spatial models are that simple ‘global model’ is advo-
cated to explain any kind of relationship that exists between the given set of variables. Such
approach is basically spatial stationarity, where fixed effect parameters of the model do not vary
spatially. Whether, in some study cases we cannot restrict to a single global model and nature of
the model must vary across spaces to reflect the structure within the data (Brunsdon,
Fotheringham, and Charlton 2010). This is the case of spatial nonstationarity. This approach is
quite analogous to geographically weighted regression (GWR) in a multiple regression model
which allows different relation to exist between study and auxiliary variates to exist at different
points in space. The attempt in this article is to conceptualize the GWR version of area level of
small area model to yield spatial nonstationary FH model. A hierarchical Bayes (HB) paradigm is
proposed to obtain small area or domain level estimates through this model. Developed approach
is motivated by a study aimed to obtain district level estimates of paddy (green) yield in the state
of Uttar Pradesh in India using survey data from the Improvement of crop statistics (ICS) scheme
and linked with Indian Population Census. Earlier, Chandra, Salvati, and Chambers (2015) has
proposed nonstationary empirical best linear unbiased predictor (NSEBLUP) to obtain precise
area level small area estimates in presence of spatial nonstationarity. In contrast, this article dis-
cusses a HB framework to attain spatially smoothen Bayes estimates at subpopulation level.
Bayesian approach is somewhat more flexible than frequentist framework yielding quick and eas-
ier MSE computation which is posterior variance; additionally posterior mean or point estimate
known to include more reasonable credible interval region.

Rest of the article is organized as follows. Next section provides description of paddy (green)
crop yield data collected under the ICS scheme as motivational example. Section 3 delineates
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methodological discussion and development. Simulation studies are furnished in Sec. 4 followed
by an application to obtain district level estimates of paddy (green) yield in Uttar Pradesh using
proposed SAE method. The article concludes with relevant concluding remarks.

2. Descriptions of data

In India, most of the large scale surveys are planned at higher aggregation level and provide valid
direct estimates for state and nation, whereas any planning at smaller administrative units like
districts, municipalities, gram panchayats require survey designing at this stage which are both
costly and time consuming. Therefore, SAE method can be a crucial and acceptable alternative to
provide reliable statistics at disaggregate or micro level (e.g. districts, municipalities, gram pan-
chayats etc.) from the existing surveys. Agriculture is one of the key drivers of Indian economy;
this sector is such a crucial that prosperity of agrarian community is essential for even Govt./
institutional stability. Accurate estimation of yield and productivity of different crops hold utmost
importance therefore to formulate policy actions undertaken by the government departments in
order to monitor the progress of agriculture sector and deliver insurance support. Crop-cutting
experiments (CCEs) conducted under the scheme of general crop estimation surveys (GCES)
accurately estimate crop yield during cultivation cycle. The data gathered from CCE are useful to
the multiple stakeholders in the agricultural value chain, especially to the Govt. and financial
institutions to extend insurance and loan coverage to the farmers in case of poor harvest or fail-
ure. But due to huge spread and volume of field level and compilation work under GCES, quality
of such data is objectionable. Therefore, a scheme entitled ICS has been introduced by
Government of India to carry out quality check and supervision of around 30,000 CCEs every
year. But this comes with the compromise of reduced sample sizes under ICS whereas of better
quality. As a consequence, direct survey estimates of yield (based on ICS data) produced at disag-
gregate level like districts are not acceptable due to high degree of sampling variability (i.e. CV).
The endeavor of SAE methodology is a practical and proficient alternative in this context to pro-
vide district level estimate of crop yield with reasonable precision.

An inadequate sample size under ICS has been one of the significant hindrances to provide
reasonable estimates of crop yield at district level. For this study, in the state of Uttar Pradesh
ICS data of paddy yield collected during the year 2009–2010 is available for 58 districts only and
there is no sample data for the remaining 12 districts. Study variable is yield rate for paddy
(green) crop recorded as gram per 43.12m2 based on equilateral triangle CCE plot of side 10m
each. District specific sample sizes for the 58 sampled districts ranges from 4 to 28 with median
of sample sizes 10. Figure 1 is portrayed for visual scrutiny of district specific sample size distri-
bution. With the few district specific sample sizes traditional survey estimation approach leads to
imprecise estimates, further there is no design based solution to obtain estimates for 12 out-of-
sample districts. This motivates to carry forward SAE approach instead of pertaining to trad-
itional design based option. The production of reliable small area estimates is based on the avail-
ability of accurate auxiliary information. The auxiliary variables for this study at small area (i.e.
district) level comes from Indian Population Census 2011. In the original data file, there are
more than 121 available covariates. Initial scrutiny of these variables identified a group of poten-
tial auxiliary variables to be used for the study. This has been done based on measuring correl-
ation between direct survey estimates and pool of available variables from census database.
Finally, step-wise regression method was used to select auxiliary variables for SAE which signifi-
cantly explained the model. See for example, Chandra (2013). The final selected auxiliary varia-
bles for the small area model were average household size (AHS) and female population of
marginal household (FPMH); checks on spatial nonstationarity on these two variables were also
done. Refer Table 1 for descriptive measure of the auxiliary variable values and sample sizes over
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all the districts or small areas. Note that for SAE of 12 out-of-sampled districts same two covari-
ates were used, since the underlying model for sample areas also holds for out-of-sample districts.

3. Methodology setup

In small area applications, area (or aggregate) level models are widely used when unit-level data
are unavailable, or, as is often the case, where auxiliary variables are only available in aggregate
form. The area level models also offer flexibility in combining different sources of information

Figure 1. Map showing distribution of district specific sample sizes.

Table 1. Descriptive statistics for the auxiliary variables and district specific sample sizes.

Descriptive statistics AHS FPMH Sample size

Minimum 5.66 1425.0 0
Q1 6.11 3791.8 4
Mean 6.46 8636.3 9
Median 6.49 7230.0 10
Q3 6.66 10422.8 14
Maximum 8.36 39002.0 28
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with different error structures. After the pioneering work of Fay and Herriot (1979) on area level
small area model (popularly referred as Fay Herriot (FH) model), till date the volume of small
area literatures and methodological inventions has taken a gigantic form. Basis structure of the
FH model includes a sampling model for the direct survey estimates and a linking model to
incorporate auxiliary information as well as area specific random effect which probably explains
unstructured variations among areas not countered by fixed effect part (auxiliary variables). But,
in FH model an implicit independence assumption is also imposed on the random effect compo-
nent which implies different small areas are simply uncorrelated. However, in agricultural, envir-
onmental surveys spatial dependence between neighboring areas cannot be denied. Thus, to
incorporate the neighboring effect, it is reasonable to construct spatial model to capture the spa-
tial association between areas. In this context Pratesi and Salvati (2008); Chandra (2013) has
extended the FH model to incorporate spatially correlated random effects using CAR and SAR
specifications. These models define the dependence between areas by using certain contiguity
matrix, which can be obtained by using coordinates of the centroid of each small area, its geo-
metric properties (extension, perimeter, etc.) and the neighborhood structure (Baldermann,
Salvati, and Schmid 2018). Additionally, You and Zhou (2011); Anjoy and Chandra (2019) have
pertained to the same concept of using spatial model by SAR specification under Bayesian frame-
work. Chandra, Salvati, and Chambers (2015) and Chandra, Salvati, and Chambers (2017) have
investigated the spatial association between neighboring areas via spatial nonstationary process
under frequentist framework. In contrast, this article introduces spatial nonstationary version of
FH model (NSFH) under a hierarchical Bayesian (HB) framework to estimate small area means.
The key feature of spatial nonstationary process is that here spatial effect is added via spatially
varying covariates, that is, regression parameters vary spatially. Again, one of the strategic advan-
tages of using Bayes framework is that here estimations are described by assuming particular
probability distributions, which render the opportunities to analyze the uncertainties involved in
the decision process. Bayesian approach of SAE leads to more reasonable interval estimates
(Anjoy, Chandra, and Basak 2019). What follows, we first delineate the FH model followed by
the spatial version of FH (SFH) model of Anjoy and Chandra (2019) and then proposed NSFH
model in hierarchical Bayesian framework.

3.1. Hierarchical Bayes Fay–Herriot (HBFH) method of SAE

Let D be the number of small areas (or simply areas) in the population. We use a subscript i to
index the quantities belonging to area i. Let yi denotes the direct survey estimate of population
parameter (e.g. the population mean, total or some derived function of mean or total) hi of a
variable of interest y for area i: Let xi ¼ ð1, xi1, :::, xip�1Þ0 be the p-vector of auxiliary variables for
area i, often obtained from administrative and census records, related to the population param-
eter hi: The simple area specific two stage model suggested by Fay and Herriot (1979) is

yi ¼ hi þ ei and hi ¼ x0ibþ vi: (1)

The first part (also referred as sampling model) of model (1) accounts for the sampling variability
of the direct survey estimates yi of population parameter hi and the second part (i.e. linking
model) links the population parameter hi to a vector of known auxiliary variables xi: Combining
the two components of model (1), the FH model can be expressed as a random effect model of
form

yi ¼ x0ibþ vi þ ei, i ¼ 1, :::,D (2)

where b ¼ ðb0, :::,bp�1Þ0 is the p-vector of unknown of regression coefficients and vi being the
area specific random effect which is independent and identically (i.i.d) distributed with EðviÞ¼ 0
and varðviÞ ¼ r2v: Here ei is independent sampling error associated with direct survey estimator
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yi: It is assumed that EðeijhiÞ ¼ 0 and varðeijhiÞ ¼ r2ei: The two random errors are independent of
each other within and across areas. Usually the sampling variances r2eiði ¼ 1, :::,DÞ are assumed
to be known and these are obtained from survey data considering the underlying survey design.
However, various Bayesian SAE literatures also reports the cases where sampling variances are
assumed to be unknown and derived out following v2 distribution or through using design effect
(You and Zhou 2011; Liu, Lahiri, and Kalton 2014). Aggregating D area level model (2) leads to
population level FH model of form

y ¼ h þ e ¼ Xbþ vþ e, (3)

where y ¼ ðy1, :::, yDÞ0 is the D� 1 vector of direct survey estimates, h ¼ ðh1, :::, hDÞ0 is the D� 1
vector of population parameters, X ¼ ðx01, :::, x0DÞ0 is the D� p matrix of auxiliary variables whose
i-th row is given by x0i, v ¼ ðv1, :::, vDÞ0 is the D-vector of random area effects with v �
Nð0, r2vIDÞ and e ¼ ðe1, :::, eDÞ0 is the D-vector of sampling errors with e � Nð0,ReÞ, where Re ¼
diag r2ei; 1 � i � D

� �
is the known matrix of design variances. Further, it is assumed that the vec-

tor of area effects v is distributed independently of the sampling errors e, so that the covariance
matrix of the vector y is VarðyÞ ¼ V ¼ r2vID þ Re, where ID is the identity matrix of order D.
The parameters r2v and Re are often referred to as the variance components of model (3). With
this, we attempt to draw small area inference for population parameter vector h (equivalently
each hi, i ¼ 1, :::,D) through HB approach by implementing Gibbs sampling method. The HB ver-
sion of FH (HBFH) model can be expressed as

Sampling model : yjh � Nðh,ReÞ and
Linking model : hjb, r2v � NðXb, r2vIDÞ: (4)

Following standard literature prior choice for b is usually taken to be Nð0,r20Þ and for r2v Inverse
Gamma(a0, b0) where r20 is set to be very large (say, 106) and very small values for a0 and b0
(usually a0 ¼ b0 ! 0) to reflect lack of prior knowledge about variance parameters (Rao 2003;
You and Zhou 2011; Liu, Lahiri, and Kalton 2014; Anjoy, Chandra, and Basak 2019). Hereafter,
this method of SAE is referred as HBFH.

3.2. Hierarchical Bayes spatial Fay Herriot (HBSFH) method of SAE

The FH or HBFH model implicitly assumes that direct survey estimates from different small areas
are uncorrelated. However, in practice the boundaries that define a small area are typically arbi-
trary, and there appears to be no good reason why neighboring areas should not be correlated. It
is therefore often reasonable to assume that the effects of neighboring small areas, defined via a
contiguity criterion, are correlated (Pratesi and Salvati 2008). In small area modeling incorporat-
ing the information of spatial dependence between neighboring areas often improves the model
accuracy. Therefore, to incorporate spatial information linking model with spatial dependence in
error structure, so called SAR error process is often used. Let, define the random area effect u
satisfy

u ¼ qWuþ v, (5)

where q is the spatial autoregressive coefficient measuring the strength of spatial relationship and
W is the proximity or contiguity matrix defining how random effects from neighboring areas are
related. Contiguity matrix W provides a simplest way to define spatial interaction between adjoin-
ing small areas. Different choices of W matrix haven been in practice in the literature (Chandra
2013). In this article, we consider the contiguity matrix with element wjkðj, k ¼ 1, :::,DÞ taking the
value 1 if area j shares an edge with area k and 0 otherwise. In particular a row-standardized
form of contiguity matrix is used. We can also rewrite, u ¼ ðI� qWÞ�1v with v � Nð0,r2vIDÞ so
EðuÞ ¼ 0 and VarðuÞ ¼ r2v ðID � qWÞðID � qW0Þ� ��1

: Following Anjoy and Chandra (2019), the
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spatial dependent HBFH (HBSFH) model is given by

Sampling model : yjh � Nðh,ReÞ and

Linking model : hjb, q, r2v � N Xb, r2v ID � qWð Þ ID � qW0ð Þ� ��1
� �

:
(6)

In HBSFH model (6), prior choice for b is N(0, 10�6); prior for hyperparameter r2v taken as
Inverse Gamma(a0, b0) and prior for spatial autoregressive coefficient q is Uniform (-1,1).

3.3. Hierarchical Bayes nonstationarity Fay Herriot (HBNSFH) method of SAE

The FH model (1) postulates that fixed-effect parameter or regression coefficient vector b does
not vary spatially, that is, b is spatially invariant, this is the case of spatial stationarity. The
HBSFH model (6) allows for spatial correlation in the area effects but it also assumes the same
invariant form of b (Anjoy and Chandra 2019). There may be data situation where model param-
eter varies spatially which referred as spatial nonstationarity (Opsomer et al. 2008; Baldermann,
Salvati, and Schmid 2018). Regression coefficients in the small area model therefore may be
expressed as explicit functions of the spatial locations of the sample observations instead of defin-
ing one single global model with fixed parameter. Brunsdon, Fotheringham, and Charlton (2010)
was pioneering in forwarding the concept for handing such situation of spatial nonstationarity in
regression model, which is through GWR model. In area level model, Chandra, Salvati, and
Chambers (2015, 2017) has contributed NSEBLUP and nonstationary generalized linear mixed
model (NSGLMM). This article adds another step to deal with spatial nonstationarity in SAE field
through area level HBNSFH model. Analytic MSE expression of NSEBLUP model is quite com-
plex and based on very some approximation (Chandra, Salvati, and Chambers 2015). In contrast,
the strategic advantage in considering HB approach is that, here estimations are described by tak-
ing particular probability distributions which render the opportunities to analyze the uncertainties
involved in the decision process. In the HB method, together with prior distribution of the
parameters, prior of the hyper-parameters (model parameters) are also specified then inferences
are made from the posterior distributions. A parameter is estimated by posterior mean and pos-
terior variance is taken as the measure of the error or uncertainty of the estimates. The HB
approach can effectively deal with complex small area models using Monte Carlo Markov Chain
(MCMC), which overcomes the computational difficulties of high-dimensional integrations of
posterior densities (You and Rao 2002).

We now define a spatial nonstationary extension of FH model. Let li denote the spatial loca-
tion of area i which corresponds to the coordinates (longitude and latitude) of an arbitrarily
defined spatial location in the area. Typically, this will be its centroid. Let Lðli, ljÞ be an appropri-
ate measure of the distance between the spatial locations of areas i and j, and define the spatial
contiguity of these two locations to be xij ¼ ð1þ Lðli, ljÞÞ�1: Let W ¼ ðxijÞ denote the positive
definite D� D matrix of spatial contiguities defined by the li: This spatial contiguity matrix is
assumed to be known. Following Chandra, Salvati, and Chambers (2015), a spatial nonstationary
version of FH (NSFH) model for area i is given by

yi ¼ x0ibðliÞ þ vi þ ei ¼ x0ibþ x0icðliÞ þ vi þ ei, (7)

where bðliÞ¼ bþ cðliÞ, vi is the area-specific random effect, assumed to follow a normal distribu-
tion with zero mean and variance r2v , that is, vi � Nð0,r2vÞ and ei is independent sampling error
associated with yi, assuming that ei � Nð0,r2eiÞ: Again, independence of these two error terms ei
and vi are also assumed. Here cðliÞ ¼ ðckðliÞ; k ¼ 1, :::, pÞ is a spatially correlated vector-
valued random process of dimension p with EðcðliÞÞ ¼ 0p�1 and covðckðliÞ, cmðljÞÞ ¼
akmð1þ Lðli, ljÞÞ�1; k,m ¼ 1, :::, p, where a ¼ ðakÞ is a p-vector of unknown positive constants
that satisfies the conditions for the pD� pD matrix Rc ¼ W� ðaa0Þ to be a covariance matrix,
where � denotes Kronecker product. Let l ¼ ðl1, :::, lDÞ0 be the D-vector of spatial locations, that
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is, the set of locations for the D areas, Z ¼ diagðx1Þ, :::, diagðxDÞ
� �0

be the D� pD matrix of
known auxiliary data, and C ¼ ðc0ðl1Þ, :::, c0ðlDÞÞ0 be a pD� 1 vector of spatial normal random
effects that capture the spatial nonstationarity in the data. We assume that C has a zero mean
vector and a covariance matrix Rc: That is, EðC Z, lÞ ¼ 0pD�1

�� and VarðC Z, lÞ ¼ Rc:
�� Recollecting

different terms, we can express the population level version of NSFH (7) as

y ¼ Xbþ ZCþ v þ e, (8)

with

E y Z, lj Þ ¼ Xb; Var y Z, lj Þ ¼ V ¼ ZRcZ0 þ r2vID þ Re and Cov Yi, y Z, lj Þ ¼ ZiRcZ0 þ r2vdi,
			

where Zi is the ith row of Z, di denotes the ith row of ID and Re ¼ diag r2ei; i ¼ 1, :::,D
� �

: In practice,
the variance component parameters r2v and a are unknown and have to be estimated from the data.
Following Chandra, Salvati, and Chambers (2015), in this article we restrict to the simple specifica-
tion a ¼ ffiffiffi

g
p

1p so that covðckðdiÞ, clðdjÞÞ ¼ gð1þ Lðdi , djÞÞ�1, where g � 0 and 1p denotes the unit
vector of order p. In this case, we assume that the distance metric used to define Lðdi, djÞ is such that
the matrix Rc ¼ gW� ð1p10pÞ is positive semidefinite, with the parameter g then reflecting the
“intensity” of spatial clustering in the data, so g ¼ 0 corresponds to the situation where the model is
spatially homogeneous. The HB version of NSFH model (8) is expressed as

Sampling Model : yjh � Nðh,ReÞ and
Linking model : hjb, g, r2v � NðXb,ZRcZ0 þ r2vIDÞ: (9)

The prior choice for hyper-parameter b is usually taken to be N(0,r20) and for variance param-
eter g and r2v Inverse Gamma(a0, b0) where r20 is set to be very large (say, 106) and very small for
a0 and b0 (usually a0 ¼ b0 ! 0) to reflect lack of prior information. Gibbs sampling method is
implemented to estimate posterior meanEðhijyÞ and posterior variancevarðhijyÞ: Now onwards,
we refer this method of SAE as HBNSFH. The required full conditional distributions for the
Gibbs sampler under HBNSFH model (9) are given as,

hjb, g, r2v , y � MVN Xbþ ZRcZ0 þ r2vID
	 �

V�1 y � Xbð Þ, ZRcZ0 þ r2vID
	 �

V�1Re
� �

,

bjh, g, r2v � MVN X0V�1Xð Þ�1
X0V�1hð Þ, X0V�1Xð Þ�1

r2vID þ ZRcZ0	 �h i
,

r2vjb, g, h � IG a1 þ D
2
, b1 þ h� Xb� ZCð Þ0 h� Xb� ZCð Þ

2

� 

, and

gjb, r2v , h � IG a0 þ D
2
, b0 þ h� Xb� vð Þ0 h� Xb� vð Þ

2

� 

:

4. Empirical evaluation

In this section we illustrate model based simulation studies to compare the performance of small
area estimates produced by HBFH, HBSFH, and HBNSFH model. The scenarios in the model
based simulations are settings under spatial stationarity and nonstationarity with different prior
choices. Data were generated using both stationary and nonstationary methods for D¼ 49 and
100 areas, respectively. Further, in nonstationary method, two approaches of data generation have
been considered. The simulation study involves sensitivity analysis for distribution of variance
parameter r2v with respect to shape and scale parameters of Inverse Gamma (IG) distribution.
Accordingly, we have taken three different prior form, for example, IG (0.001, 0.001), IG (0.01,
0.01), IG (0.1, 0.1). In all cases prior for b has taken to be N(0,106) and prior choice for g in
HBNSFH is same as r2v: Hereafter, words “model” and “method” will be used interchangeably in
the text.
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4.1. Stationary data generation process

In stationary data generation process (SDGP) regression coefficients are spatially invariant, hence
the aim is to explore how HBNSFH method performs as compared when the data follow usual
HBFH model. Here the data has been generated using area level model:

yi ¼ 10þ 2xi þ vi þ ei, i ¼ 1, :::,D,

where xi � Uniform½0, 1�; vi � Nð0, r2v ¼ 1Þ and independent sampling errors ei generated from
N(0,r2ei) with r2ei taking values 7,6,5,4,3, respectively, for equal number of areas (Datta, Rao, and
Smith 2005).

For D¼ 49 areas r2ei
� �10

i¼1 ¼ 7; r2ei
� �20

i¼11 ¼ 6; r2ei
� �30

i¼21 ¼ 5; r2ei
� �40

i¼31 ¼ 4; r2ei
� �49

i¼41 ¼ 3:

For D¼ 100 areas r2ei
� �20

i¼1 ¼ 7; r2ei
� �40

i¼21 ¼ 6; r2ei
� �60

i¼41 ¼ 5; r2ei
� �80

i¼61 ¼ 4; r2ei
� �100

i¼81 ¼ 3:

4.2. Nonstationary data generation process

In nonstationary data generation process (NSDGP), regression parameters vary spatially, that is,
spatially variant. Here two methods of DGP denoted, respectively, as NSDGP1 and NSDGP2 are
illustrated. In NSDGP1 data is generated via GWR model adding an area specific random effect.
The underpinning model for NSDGP1 is,

yi ¼ b0i þ b1ixi þ vi þ ei, i ¼ 1, :::,D,

with

b0i ¼ 10þ ð2� longitudeiÞ þ ð0:5� latitudeiÞ and b1i ¼ 4� cos sqrt ð1:2p� longitudeiÞ2þ
nn

ð1:2p� latitudeiÞ2gg: The distribution of auxiliary variable xi, random effect vi and sampling
error ei are same as defined in SDGP. To define longitudei and latitudei, it is assumed that obser-

vations has been drawn from a two-dimensional grid consist of a
ffiffiffiffi
D

p
x

ffiffiffiffi
D

p	 �
points uniformly

spaced between �1 and 1 with a distance of 2=
ffiffiffiffi
D

p � 1
	 �

between any two neighboring points
along the vertical and horizontal axes. When D¼ 49, the lattice points where the observations are
taken areðlatitudei, longitudeiÞ¼ðk1, k2Þ where k1, k2 ¼ �1, � 0:66, � 0:33, 0, 0:33, 0:66, 1f g;
for D¼ 100, the set ðk1, k2Þ is k1, k2 ¼ �1, � 0:77, � 0:55, � 0:33, � 0:11, 0:11,f
0:33, 0:55, 0:77, 1g: The D points or spatial locations are therefore arranged in such a way that
k1 varies from �1 to 1 for each given k2, which also then varies from �1 to 1.

For NSDGP2 data is generated via the following model,

yi ¼ 10þ 2xi þ ffiffiffi
g

p
c0 lið Þ þ c1 lið Þxi
	 �þ vi þ ei, i ¼ 1, :::,D:

The values of g has been used as 2, 4, 6 in this study. The vector ðc0ðliÞ, c1ðliÞÞ0 has been defined
as a random draw from N(0,W� I2) with W being the distance matrix between lattice points or
generated spatial locationsðli, ljÞ: The lattice points for D¼ 49 and 100 areas are same as defined
in NSDGP-1 with li¼ðlatitudei, longitudeiÞ , i ¼ 1, :::,D: All other aspects of data generation with
respect to distribution of xi, viandei remains the same.

We generated K¼ 500 independent data sets in each specified scenario illustrated above
under different prior set up, different number of areas and different DGP, then estimated small
area population means using HBFH, HBSFH, and HBNSFH methods. We then compare the
empirical performance and relative efficiency of proposed HBNSFH approach as compared to
other nonspatial as well as spatial stationary alternatives. Under SDGP and NSDGP how the
performance varies for HBFH, HBSFH, and HBNSFH estimates are noticed, along with per-
formance of the small area estimators under each model are compared with respect to different
prior cases. R and JAGS software has been used for implementation of the discussed models.
To implement the Gibbs sampler, three independent chains are used each of length 10000. The
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first 5000 iterations are deleted as “burn-in” periods. Based on K¼ 500 samples, the perform-
ance indicators calculated for comparison of models for each area i are:

	 RBi ¼ ðK�1 PK
k¼1 h

ðkÞ
i Þ�1 K�1 PK

k¼1ðĥ
ðkÞ
i � hðkÞi Þ

n o
� 100 is the Relative Bias Percentage (RB%)

for ith domain, where ĥ
ðkÞ
i is the estimate of true population mean hðkÞi for ith for small area at

kth simulation.
	 RRMSEi ¼ ðK�1 PK

k¼1 h
ðkÞ
i Þ�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K�1

PK
k¼1 ðĥ

ðkÞ
i � hðkÞi Þ2

q� �
� 100 is the Relative Root Mean

Squared Error Percentage (RRMSE%) for ith for small area.

	 TRMSEi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K�1

PK
k¼1 ðĥ

ðkÞ
i � hðkÞi Þ2

q
is True or Simulation Root MSE (TRMSE) for ith area.

	 ERMSEi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K�1

PK
k¼1 mseðkÞi

q
is the Estimated RMSE (ERMSE), where mseðkÞi is the posterior

variance based on particular HB model pertinent to kth simulation.

	 CRi ¼ K�1 PK
k¼1 IðLBðĥ

ðkÞ
i Þ � hðkÞi � UBðĥðkÞi ÞÞ � 100 is the Coverage Rate (CR%) for ith

small area, where LBðĥðkÞi Þ and UBðĥðkÞi Þ are, respectively, Lower Bound (LB) and Upper

Bound (UB) of the estimated population mean ĥ
ðkÞ
i : Here I(.) denotes an indicator function

which takes values 1 if true parameter value hðkÞi is within the computed interval, otherwise

Table 2. Mean values for RB% and RRMSE% over D¼ 49 and 100 areas under different scenarios of data generation process
and priors for HBFH, HBSFH, and HBNSFH methods of SAE.

IG (0.001, 0.001) IG (0.01, 0.01) IG(0.1, 0.1)

Priors Criterion RB% RRMSE% RB% RRMSE% RB% RRMSE%

D¼ 49
SDGP HBFH �0.142 9.285 �0.133 9.238 �0.138 9.168

HBSFH �0.185 9.344 �0.143 9.243 �0.125 9.596
HBNSFH �0.122 9.319 �0.125 9.273 �0.119 9.294

NSDGP1 HBFH 2.968 17.891 2.935 17.875 2.940 17.836
HBSFH 1.811 16.247 1.808 16.220 1.780 16.153
HBNSFH 1.593 15.684 1.605 15.684 1.597 15.653

NSDGP2
(g¼2)

HBFH 0.389 11.010 0.364 10.846 0.367 10.858
HBSFH 0.366 11.001 0.290 10.839 0.312 10.842
HBNSFH 0.360 10.991 0.268 10.831 0.273 10.823

NSDGP2
(g¼4)

HBFH 0.734 12.083 0.735 12.057 0.734 12.080
HBSFH 0.729 12.005 0.674 11.994 0.662 11.992
HBNSFH 0.604 11.978 0.579 11.936 0.592 11.938

NSDGP2
(g¼6)

HBFH 0.805 12.652 0.787 12.571 0.795 12.599
HBSFH 0.805 12.604 0.773 12.491 0.784 12.495
HBNSFH 0.804 12.582 0.765 12.453 0.779 12.457

D¼ 100
SDGP HBFH �0.015 8.865 �0.010 8.813 0.006 8.759

HBSFH 0.013 8.892 0.009 8.852 �0.016 8.785
HBNSFH 0.001 8.906 0.005 8.876 0.004 8.886

NSDGP1 HBFH 2.259 16.161 2.255 16.162 2.267 16.159
HBSFH 1.070 14.560 1.072 14.561 1.079 14.667
HBNSFH 0.781 13.342 0.789 13.345 0.810 13.368

NSDGP2
(g¼2)

HBFH 0.793 10.159 0.779 10.037 0.780 10.091
HBSFH 0.736 10.151 0.745 10.028 0.720 10.077
HBNSFH 0.613 10.137 0.501 10.019 0.517 10.060

NSDGP2
(g¼4)

HBFH 1.180 11.046 1.185 11.011 1.193 11.053
HBSFH 1.117 11.018 1.104 11.009 1.092 11.023
HBNSFH 0.842 10.968 0.799 10.903 0.818 10.949

NSDGP2
(g¼6)

HBFH 1.987 12.780 1.978 12.762 1.989 12.771
HBSFH 1.536 12.507 1.532 12.494 1.524 12.479
HBNSFH 1.321 12.445 1.247 12.353 1.234 12.337
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it takes value 0. This CR% particularly will demonstrate the credible interval property of
HB models.

	 ARBðvÞi ¼ TRMSEi�1 ðTRMSEi � ERMSEiÞj j � 100 is the Absolute Relative Bias Percentage
(ARBv%) for variance or MSE terms.

A better model should show smaller values of all the above statistics expect CR%. Higher the
CR% better is the model.

Figure 2. Plot of RRMSE% values over D¼ 49 (Right) and D¼ 100 (Left) small areas for NSDGP1 under different priors for HBFH
(solid line) and HBNSFH (dash line) methods of SAE.
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4.3. Simulation results and discussion

This section presents the results of model based simulation study with respect to different DGP
and different prior situations as described above. Results have been produced for D¼ 49 and 100
small areas, respectively. Table 2 reports the mean values for RB% as well as RRMSE% over the
areas in different scenarios of DGP and prior cases. Table 2 shows that HBFH demonstrates rela-
tively lower RRMSE% than HBSFH and HBNSFH method in case of SDGP. When the underlying
data is stationary, it is expected that spatial stationary HBFH would perform better. This follows
for all the cases of priors and D¼ 49 and 100 areas, respectively. Similarly, when the underlying
data is nonstationary as in case of NSDGP1 and NSDGP2 as one would expect HBSFH and
HBNSFH should perform better than HBFH, as both the models utilize spatial information. The
result follows the same in terms of both RB% and RRMSE%. Additionally, as the number of areas
increases (D¼ 49–100), impact of nonstationarity in the data becomes stronger. Therefore, gain
in RRMSE% of HBNSFH model over HBFH improves. In particular, gain in RRMSE% is signifi-
cantly higher for NSDGP1 than NSDGP2. Further, the HBNSFH consistently performs better
over the HBSFH. Figure 2 portrays the plot of RRMSE% values for D¼ 49 and 100 small areas
over all the priors for NSDGP1. Considering NSDGP1, for D¼ 49 areas the percentage gain in
mean RRMSE% of HBNSFH model over HBFH model is 14.07, 13.97, and 13.94 for IG(0.001,
0.001), IG(0.01, 0.01), IG(0.1, 0.1) priors, respectively. Again, for D¼ 100 small areas the percent-
age gain in mean RRMSE% of HBNSFH over HBFH is 21.13, 21.11, and 20.88 for IG(0.001,
0.001), IG(0.01, 0.01), IG(0.1, 0.1) priors, respectively. Percentage improvement in mean RB% of
HBNSFH over HBFH also considerably increases by increasing number of areas for both
NSDGP1 and NSDGP2, also as we move from g ¼2 to higher value for NSDGP2. In these DGPs,

Table 3. Mean values of ARBv%, CR%, TRMSE, ERMSE over D¼ 49 and 100 areas for NSDGP1 and NSDGP2 (g¼6) under differ-
ent priors for variance estimation of HBFH, HBSFH, and HBNSFH methods of SAE.

D¼ 49 D¼ 100

Areas Measure ARBv% CR% TRMSE ERMSE ARBv% CR% TRMSE ERMSE

IG(0.001, 0.001) Prior
NSDGP1
HBFH 13.39 91 1.569 1.481 13.18 94 1.410 1.409
HBSFH 9.18 92 1.437 1.452 8.28 94 1.283 1.281
HBNSFH 8.75 94 1.389 1.395 6.95 95 1.176 1.198
NSDGP2(g¼6)
HBFH 15.69 91 1.463 1.420 15.79 93 1.399 1.371
HBSFH 15.59 91 1.460 1.415 14.15 93 1.372 1.324
HBNSFH 15.55 92 1.456 1.409 14.11 93 1.366 1.317
IG(0.01, 0.01) Prior
NSDGP1
HBFH 13.38 91 1.568 1.483 13.17 94 1.411 1.410
HBSFH 9.14 92 1.435 1.479 8.23 94 1.283 1.279
HBNSFH 8.98 94 1.389 1.407 7.36 95 1.176 1.207
NSDGP2(g¼6)
HBFH 15.65 93 1.454 1.432 15.80 93 1.397 1.374
HBSFH 15.57 93 1.448 1.428 14.20 93 1.371 1.325
HBNSFH 15.54 94 1.442 1.424 14.01 94 1.357 1.336
IG (0.1, 0.1) Prior
NSDGP1
HBFH 13.39 92 1.565 1.483 13.24 94 1.410 1.378
HBSFH 9.78 93 1.429 1.486 8.60 94 1.347 1.281
HBNSFH 9.47 95 1.387 1.427 8.49 95 1.208 1.228
NSDGP2(g¼6)
HBFH 15.84 92 1.457 1.424 15.82 93 1.398 1.370
HBSFH 15.80 94 1.450 1.434 14.24 93 1.369 1.327
HBNSFH 15.77 93 1.442 1.425 14.10 93 1.355 1.329
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the performance of HBSFH is in between HBFH and HBNSFH, it is definitely better than HBFH
in terms of RB% and RRMSE% for all prior cases but performs poorly than HBNSFH. Table 2
and Figure 2 ensure the fact that HBNSFH is essentially better over HBFH for spatially nonsta-
tionary data. Further, it can be observed from Table 2 that the mean RRMSE% is not affected
much by the use of different form of vague priors for variance parameter r2v: Simulation results
under different DGP are not influenced by the form of vague priors taken for the models.

Table 3 represents the mean values of ARBv%, CR%, TRMSE, ERMSE over D¼ 49 and 100
areas for NSDGP1 and NSDGP2 (g¼6) under different priors. The NSDGP1 shows considerably
lower mean values of ARBv% for HBNSFH as compared to HBSFH and HBFH in all prior situa-
tions. This indicates the smaller bias in estimating posterior variance for HBNSFH when compar-
ing the values of TRMSE and ERMSE. The mean values of TRMSE and ERMSE are also reported
in the Table 3, but ARBv% shows a clear picture of better performing model. Further, gain in
mean ARBv% values for HBNSFH over HBFH improves by increasing the number of small areas
from 49 to 100. Under NSDGP2 (g¼6) for D¼ 100 areas, the improvement with respect to

Figure 3. Contour maps showing the spatial variation in the district specific regression coefficients generated through GWR
model fitting to the ICS data.

Table 4. Summary of %CV generated by the direct and different SAE methods for 58 sample districts.

Values Direct HBFH HBSFH HBNSFH

Minimum 3.01 3.00 3.00 2.99
Q1 10.04 9.57 9.74 9.45
Mean 15.14 13.02 12.71 12.30
Median 13.42 12.46 12.37 11.81
Q3 19.46 16.48 15.90 15.45
Maximum 49.15 29.14 26.24 22.78
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Table 5. District wise estimates of paddy (green) crop yield (gram per 43.12m2) along with 95% credible interval and %CV
for direct and HBNSFH methods of SAE.

Districts Sample Size

Direct HBNSFH

Estimates Lower Upper %CV Estimates Lower Upper %CV

Saharanpur 10 19575 14574 24576 13.04 17852 13865 22005 11.58
Muzaffarnagar 6 23483 14035 32932 20.53 19050 13233 25208 15.90
Bijnor 12 19442 16669 22214 7.28 19089 16581 21741 6.91
Moradabad 8 17700 11916 23484 16.67 17944 13305 22438 13.24
Rampur 8 17250 16234 18266 3.01 17220 16195 18216 2.99
Jyotiba Phule Nagar 4 10850 7940 13760 13.68 11635 9022 14421 11.95
Ghaziabad 4 16800 6581 27019 31.03 14664 9059 20319 19.51
Bulandshahar 14 17418 13443 21393 11.64 17146 13349 20964 11.18
Aligarh 8 12419 7605 17232 19.77 12881 8675 16997 16.61
Mathura 4 10483 4880 16085 27.27 12069 7682 16516 18.92
Etah 10 12125 9813 14437 9.73 12344 10115 14471 9.15
Mainpuri 8 14019 7814 20224 22.58 14039 9558 18548 16.66
Budaun 14 12721 8968 16475 15.05 13060 9764 16379 12.71
Bareilly 14 13511 10021 17000 13.18 13825 10651 16888 11.82
Pilibhit 8 14938 9098 20777 19.94 15312 10930 19956 15.16
Shahjahanpur 12 18863 16560 21165 6.23 18431 16280 20597 6.12
Kheri 16 14975 11638 18312 11.37 15211 12079 18198 10.26
Sitapur 20 15986 11880 20093 13.11 15851 12304 19338 11.31
Hardoi 18 19286 16494 22078 7.39 18926 16317 21692 7.29
Unnao 14 12843 9841 15844 11.92 13440 10724 16200 10.38
Lucknow 8 17331 10170 24492 21.08 15466 10486 20457 16.54
Rae Bareli 18 19506 16053 22958 9.03 18186 15006 21431 8.88
Farrukhabad 5 8880 5582 12178 18.95 10193 7046 13352 15.75
Kannauj 4 34050 30416 37684 5.45 33250 29516 36809 5.61
Etawah 4 15463 13925 17000 5.07 15400 13928 16867 4.91
Auraiya 6 23717 19085 28348 9.96 21508 17641 25529 9.28
Kanpur Dehat 8 21200 16705 25695 10.82 19082 15271 22959 10.31
Kanpur Nagar 8 15375 10172 20578 17.27 15514 11377 19662 13.53
Banda 4 8888 326 17449 49.15 12321 6827 17838 22.78
Fatehpur 10 14612 8853 20371 20.11 14281 9853 18562 15.57
Pratapgarh 14 16304 11665 20942 14.52 15959 12086 19815 12.52
Kaushambi 8 15450 7295 23605 26.93 15095 9878 20509 17.80
Allahabad 20 19465 14994 23936 11.72 19909 15597 24180 10.98
Barabanki 14 18668 14600 22736 11.12 17528 14038 21155 10.16
Faizabad 12 16379 11802 20957 14.26 15755 11979 19647 12.44
Ambedkar Nagar 12 17692 14417 20966 9.44 17361 14317 20422 8.72
Sultanpur 18 16609 13493 19725 9.57 16604 13662 19551 8.98
Bahraich 14 14714 13593 15835 3.89 14658 13574 15753 3.81
Shrawasti 4 15075 9490 20660 18.9 14238 9943 18530 15.46
Balrampur 10 11975 8541 15409 14.63 12489 9526 15575 12.33
Gonda 16 16981 14828 19134 6.47 16675 14605 18751 6.37
Siddharthnagar 14 12829 9422 16235 13.55 13189 10213 16186 11.70
Basti 14 14268 9736 18800 16.21 14458 10657 18145 13.33
Sant Kabir Nagar 8 13319 11660 14978 6.35 13373 11825 14988 6.07
Mahrajganj 10 21690 16526 26854 12.15 18386 14258 22719 11.80
Gorakhpur 18 12164 9129 15199 12.73 12704 9913 15477 11.26
Kushinagar 14 19343 13702 24984 14.88 17076 12634 21683 13.63
Deoria 18 8364 5482 11246 17.58 9226 6495 11936 14.78
Azamgarh 28 11957 9961 13953 8.52 11875 9923 13730 8.09
Mau 10 9820 6039 13601 19.64 10230 6697 13690 17.30
Ballia 12 7029 4167 9892 20.78 8318 5653 11017 16.29
Jaunpur 20 16990 13571 20409 10.27 16267 13034 19448 9.97
Ghazipur 18 10858 8029 13687 13.29 11456 8784 14191 11.74
Chandauli 10 12000 7382 16618 19.63 12638 8859 16512 15.27
Varanasi 10 17665 12341 22989 15.38 16358 11421 21340 15.44
Sant Ravidas Nagar 6 6693 1943 11443 36.21 9856 5517 14178 22.53
Mirzapur 10 15625 12039 19211 11.71 15467 12123 18724 10.79
Sonbhadra 6 15283 7347 23220 26.49 12833 7627 18325 21.18
Meerut
 0 13570 9906 17234 13.78
Baghpat
 0 13962 9018 18905 18.06

(continued)

14 P. ANJOY AND H. CHANDRA



percentage gain in ARBv% of HBNSFH over HBFH is 11.90, 12.77, and 12.19 for IG(0.001,
0.001), IG(0.01, 0.01), IG(0.1, 0.1) priors, respectively. Under NSDGP1, such improvement in
mean ARBv% of HBNSFH over HBFH is even more. Table 3 also shows our investigation on
coverage properties of both the models. The noncoverage rate is marginally higher for HBFH as
compared to the other. Again, as number of areas increases all the models show the better cover-
age percentage.

5. Empirical results

This section presents the implementation of FH, SFH and NSFH approach in producing HB
small area estimates of paddy yield for different districts of the state Uttar Pradesh in India.

Table 5. Continued.

Districts Sample Size

Direct HBNSFH

Estimates Lower Upper %CV Estimates Lower Upper %CV

Gautam Buddha Nagar
 0 11420 7626 15214 16.95
Hathras
 0 14229 10620 17839 12.94
Agra
 0 15150 10808 19492 14.62
Firozabad
 0 12748 9069 16426 14.72
Jalaun
 0 13610 10193 17027 12.81
Jhansi
 0 12712 8554 16871 16.69
Lalitpur
 0 11280 8662 13898 11.84
Hamirpur
 0 11257 8823 13691 11.03
Mahoba
 0 12434 10183 14685 9.24
Chitrakoot
 0 13067 10955 15178 8.24

Out-of-sample districts.

Figure 4. District-wise 95% credible interval (lower and upper) plot of paddy yield for the direct estimates (dash line, �) and
the HBNSFH estimates (solid line, �).
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Traditional direct survey estimates for paddy yield are also computed to carry out comparison of
small area model based method vs. direct estimation approach. Although, such assessment for
model based vs. design based method is quite dwelling in survey literature; we just try to portray,
what estimates are available in public domain for disaggregated level paddy yield in Uttar
Pradesh and what we have generated. Percentage coefficient of variation (% CV) is the criteria
which have been used to indicate the better performing model with stable estimates. However,
before we present detailed empirical results, it is necessary to explore whether the described ICS
data set exhibit spatial nonstationarity or not. For this purpose, district specific regression coeffi-
cients are computed by fitting GWR model. In the fitted model we have two covariates, AHS and
FPMH; therefore we have three regression coefficients (i.e. intercepts and two slope parameters
with respect to AHS and FPMH). Figure 3 shows surface plot of estimated regression coefficients
for ICS data from a GWR fit (Fotheringham, Brunsdon, and Charlton 2002) to direct estimates
over different sample (58 sample and 12 out-of-sample) districts. This contour map confirms the
evidence of spatial nonstationarity in the ICS data; hence we may expect a better performance of
small area estimates with the newly developed method of SAE, that is, HBNSFH method.

Table 4 shows the descriptive statistics of %CV for direct estimates as well as small area model
based estimates for sample districts generated by HBFH, HBSFH and HBNSFH methods of SAE.
Estimates with smaller %CV are more reliable than others. Comparing all the HB models, it is to
be noted that the precision level of HBNSFH is better than the other model based alternative. In
direct estimation approach %CV is ranging from 3.01 to 49.15, whereas, in HBNSFH the range of
%CV is 2.99–22.78. This result reveals that the application of HBNSFH method for the data
exhibiting spatial nonstationarity will lead to significant gains in efficiency of small area estimates
over direct method and other model based alternative method. Again it is noteworthy that, for

Figure 5. District-wise %CV for direct (solid thick line), HBFH (solid dash line), HBSFH (thin line) and HBNSFH (dash line) methods
of SAE.
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no sample districts direct estimates cannot be produced. Whereas, SAE approach still can produce
estimates for such districts with %CV in a reasonable limit.

Table 5 presents district wise estimates of paddy yield (gram per 43.12m2) along with 95%
credible interval (CI) and %CV for direct and HBNSFH estimation approach. Figure 4 portrays
the comparative illustration of 95% CIs of the model based HBNSFH and the direct estimates. In
general, 95% CIs for the direct estimates are wider than the 95% CIs for the HBNSFH estimates.
Further, 95% CIs for the HBNSFH estimates are more precise and contain both direct and model
based estimates of the yield. Figure 5 is a visual picture of the district wise %CV, respectively,
implementing direct, HBFH, HBSFH and HBNSFH methods. The HB models have also been
compared through Bayesian model evaluation or comparison criteria DIC (Deviance information
criterion). Smaller value of DIC is generally expected, which is indicative of better fit. The DIC
value of HBFH, HBSFH and HBNSFH was found, respectively, as 1104, 1100, and 1097. This
Bayesian model comparison result also confirms our estimation result, as HBNSFH turns out to
be relatively better model. Figure 6 presents the spatial map showing the distribution of paddy
yield (in kg. per 43.12m2) across districts of Uttar Pradesh generated by the HBNSFH method of
SAE. Figure 7 is the spatial map of district wise %CV generated by the HBNSFH. Spatial map

Figure 6. Spatial map showing distribution of paddy yield (in kg. per 43.12m2) across districts of Uttar Pradesh generated by
the HBNSFH method of SAE.
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produced from the model based HBNSFH estimates of paddy yield presents a quick view to the
regional variations or disparity in district level yield estimates. Such spatial maps are certainly
useful to the policy makers to frame targeted plans eying to the upliftment of deprived regions of
the population. As a profound application, the suitability of this study can be found in insurance
schemes like Pradhan Mantri Fasal Bima Yojana (PMFBY) in India to deliver insurance and input
support to the needy farmers.

5. Concluding remarks

The potentiality of SAE methodologies to generate reliable small domain inference is now quite
established fact from varied theoretical researches, what needed is its real life implementation and
applications. To strengthen the micro level planning, disaggregate level estimates are often
required and small area models serve this purpose both adequately and efficiently. The current
study encompasses the development of spatial nonstationary version of HBFH (HBNSFH) SAE
method and the performance of such method has been found to be promising both in simulated
data and application. Implementation of HBFH model to the data exhibiting spatial nonstationar-
ity may not provide the proficient estimates. Hence in presence of spatial nonstationarity, the

Figure 7. Spatial map of district wise %CV generated by the HBNSFH method of SAE.
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application of HBNSFH model and associated method should be encouraged regarding estimation
problem of population mean or total. SAE method is officially used in many countries to produce
several official estimates and even more spread of such approach is need of the day with emerg-
ing necessities for micro level data. However, to fully trap the potentiality of this approach it is
prerequisite to check the basic diagnostics of survey data and related auxiliary variables.
Application of spatial nonstationary or other spatial models are good enough to yield promising
estimates but application should be need based too.
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